3D目标检测数据集 DAIR-V2X-V

2023-10-12 06:52
文章标签 数据 目标 检测 3d v2x dair

本文主要是介绍3D目标检测数据集 DAIR-V2X-V,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文分享国内场景3D目标检测,公开数据集 DAIR-V2X-V(也称为DAIR-V2X车端)。DAIR-V2X车端3D检测数据集是一个大规模车端多模态数据集,包括:

  • 22325帧 图像数据
  • 22325帧 点云数据
  • 2D&3D标注

基于该数据集,可以进行车端3D目标检测任务研究,例如单目3D检测点云3D检测多模态3D检测

该数据集由以下机构联合提供的,有什么问题和联系官方邮箱:Email: dair@air.tsinghua.edu.cn

清华大学智能产业研究院(AIR)

北京市高级别自动驾驶示范区

北京车网科技发展有限公司

百度Apollo

北京智源人工智能研究院

目录

一、数据采集

二、数据标注

三、下载数据集

四、标定参数解析 

五、标签解析

六、数据索引信息

七、示例数据效果


一、数据采集

设备型号

Velodyne128 LiDAR

  • - 采样帧率:10HZ
  • - 水平FOV:360,垂直FOV:40°,-25°~15°
  • - 最大探测范围:245m;探测距离精度:<=3cm;最小角分辨率(垂直):0.11°

Camera

  • - 图像分辨率:1920x1080

标定和坐标系

  • 完备的车端3D感知需要获取相机和LiDAR传感器数据的相互位置和内外参数等,以建立不同传感器数据间的空间同步。
  • - LiDAR坐标系
  • LiDAR坐标系是以LiDAR传感器的几何中心为原点,x 轴水平向前,y 轴水平向左,z 轴竖直向上,符合右手坐标系规则。
  • - 相机坐标系
  • 相机坐标系是以相机光心为原点,x 轴和y 轴与图像平面坐标系的x 轴和y 轴平行,z 轴与相机光轴平行向前、与图像平面垂直。通过LiDAR到相机的外参矩阵,可以将点从LiDAR坐标系转到相机坐标系。
  • - 图像坐标系
  • 图像坐标是以相机主点(即相机光轴与图像平面的交点,一般位于图像平面中心)为原点,x 轴 水平向右,y 轴水平向下的二维坐标系。相机内参可以实现从相机坐标到图像坐标的投影。

二、数据标注

从车端数据中选择22325帧有效图像+点云多模态数据,利用2D&3D联合标注等技术标注图像和点云多模态数据中的道路障碍物目标的2D和3D框,同时标注了障碍物类别、障碍物3D信息、遮挡和截断等信息。其中DAIR-V2X的3D标注是以LiDAR为坐标系,同时保存如下标注信息:

  • - 障碍物类别:一共10类,包括行人、机动车等

    类型

    小汽车

    卡车/大货车

    面包车/厢式货车

    公交车/大型旅客车

    行人

    英文

    Car

    Truck

    Van

    Bus

    Pedestrian

    类型

    自行车

    三轮车

    摩托车

    手推车

    交通锥筒

    英文

    Cyclist

    Tricyclist

    Motorcyclist

    Barrowlist

    Trafficcone

  • - 障碍物截断:从[0, 1, 2]中取值,分别表示不截断、横向截断、纵向截断
  • - 障碍物遮挡:从[0, 1, 2]中取值,分别表示不遮挡、0%~50%遮挡,50%~100%遮挡
  • - 2D box:图像中2D bounding box框
  • - 3D box:点云上3D bounding box,车端基于LiDAR坐标系,路端基于虚拟LiDAR坐标系;包括 (height, width, length, x_loc, y_loc, z_loc, rotation),其中rotation表示障碍物绕Z轴旋转角度

三、下载数据集

来到官网下载:https://thudair.baai.ac.cn/mycount

​ 

下载后的目录如下所示

 single-vehicle-side 存放calib、label、data_info.json。

single-vehicle-side-image 存放车端图像数据。

single-vehicle-side-velodyne 存放车端点云数据。

数据文件结构,如下表所示

数据

数据简介

single-vehicle-side

velodyne/xxxxxx.pcd

车端点云数据

image/xxxxxx.jpg

车端图像数据

calib/lidar_to_camera/xxxxxx.json

车端LiDAR到Camera的外参文件

calib/camera_intrinsic/xxxxxx.json

车端Camera的内参文件

label/camera/xxxxxx.json

标注文件,其中3D标注以相机时间戳为基准贴合图像中的障碍物目标、以LiDAR为坐标系

label/lidar/xxxxxx.json

标注文件,其中3D标注以LiDAR时间戳为基准贴合点云中的障碍物目标、以LiDAR为坐标系

data_info.json

数据索引相关信息

四、标定参数解析 

在single-vehicle-side/calib/camera_intrinsic目录中,示例文件 000000.json

{"cam_D": [-0.382041, 0.335649, 0.000523, 0.000634, 0.0], "cam_K": [3996.487567, 0.0, 955.58618, 0.0, 3963.430994, 527.646219, 0.0, 0.0, 1.0]}

cam_D是畸变参数;cam_K是3*3的内参矩阵。

在single-vehicle-side/calib/lidar_to_camera目录中,示例文件000000.json

{"rotation": [[0.006283, -0.999979, -0.001899], [-0.005334, 0.001865, -0.999984], [0.999966, 0.006293, -0.005322]], "translation": [[-0.298036], [-0.666812], [-0.516927]]}

rotation是3*3的旋转矩阵;translation是3*1平移向量。

五、标签解析

图像标签:在single-vehicle-side/label/camera目录中,示例文件000000.json

[{"type": "Car", "occluded_state": 0, "truncated_state": 0, "alpha": 0.338885815438449, "2d_box": {"xmin": 0, "ymin": 527.938232, "xmax": 69.723068, "ymax": 637.4556269999999}, "3d_dimensions": {"h": 0.850836, "w": 2.073565, "l": 4.337498}, "3d_location": {"x": 32.83248, "y": 9.513366, "z": -1.261215}, "rotation": -1.615145}]

它的格式Kitti数据集基本是一致的;当然有细微差别。

{"type": type,                         // 障碍物类型"truncated_state": truncated_state,   // 障碍物截断情况:从[0, 1, 2]中取值,分别表示不截断、横向截断、纵向截断 "occluded_state": occluded_state,     // 障碍物遮挡情况:从[0, 1, 2]中取值,分别表示不遮挡、0%~50%遮挡,50%~100%遮挡"alpha": alpha,                       // 观察者视角,从[-pi, pi]中取值"2d_box": {                           // 图像中2D bounding box框"xmin": xmin, "ymin": ymin, "xmax": xmax, "ymax": ymax}, "3d_dimensions": {                    // 3D bounding box长宽高"h": height, "w": width, "l": length}, "3d_location": {                      // 3D bounding box中心点坐标"x": x, "y": y, "z": z}, "rotation": rotation              // 3D bounding box绕中心点z轴正方向为旋转轴,从y轴正方向开始旋转的角度
}

标签共有10类,如下所示。

类型标签名称
小汽车Car
卡车/大货车Trunk
面包车/厢式货车Van
公交车/大型旅客车Bus
行人Pedestrian
自行车Cyclist
三轮车Tricyclist
摩托车Motorcyclist
手推车Barrowlist
交通锥筒TrafficCone

1

 

点云标签:在single-vehicle-side/label/lidar目录中,示例文件000000.json

[{"type": "Car", "occluded_state": 0, "truncated_state": 0, "alpha": 0.3092128173071816, "2d_box": {"xmin": 0, "ymin": 527.938232, "xmax": 69.723068, "ymax": 637.4556269999999}, "3d_dimensions": {"h": 2.036748, "w": 2.073565, "l": 4.252306}, "3d_location": {"x": 32.84116, "y": 9.75075, "z": -1.040589}, "rotation": -1.578873}]

camera格式和lidar格式是一致的。

六、数据索引信息

在single-vehicle-side/data_info.json文件,是记录数据索引相关信息。

[{"image_path": "image/000000.jpg", "image_timestamp": "1604988999001000", "pointcloud_path": "velodyne/000000.pcd", "point_cloud_stamp": "1604988999006000", "calib_camera_intrinsic_path": "calib/camera_intrinsic/000000.json", "calib_lidar_to_camera_path": "calib/lidar_to_camera/000000.json", "label_camera_std_path": "label/camera/000000.json", "label_lidar_std_path": "label/lidar/000000.json"},

{"image_path": "image/000001.jpg", "image_timestamp": "1604989000204000", "pointcloud_path": "velodyne/000001.pcd", "point_cloud_stamp": "1604989000206000", "calib_camera_intrinsic_path": "calib/camera_intrinsic/000001.json", "calib_lidar_to_camera_path": "calib/lidar_to_camera/000001.json", "label_camera_std_path": "label/camera/000001.json", "label_lidar_std_path": "label/lidar/000001.json"},

{"image_path": "image/000002.jpg", "image_timestamp": "1604989078801000", "pointcloud_path": "velodyne/000002.pcd", "point_cloud_stamp": "1604989078805000", "calib_camera_intrinsic_path": "calib/camera_intrinsic/000002.json", "calib_lidar_to_camera_path": "calib/lidar_to_camera/000002.json", "label_camera_std_path": "label/camera/000002.json", "label_lidar_std_path": "label/lidar/000002.json"},

对于的格式如下:

类型字段含义
cameraimage_path图像路径
cameraimage_timestamp图像时间戳
lidarpointcloud_path点云路径
lidarpointcloud_timestamp点云时间戳
labellabel_lidar_path以点云时间戳为基准标注结果路径
labellabel_camera_path以图像时间戳为基准标注结果路径
calibcalib_lidar_to_camera_pathLiDAR坐标系到相机坐标系参数路径
calibcalib_lidar_to_novatel_pathLiDAR坐标系到NovAtel坐标系参数路径
calibcalib_novatel_to_world_pathNovAtel坐标系到世界坐标系参数路径
calibcalib_camera_intrinsic_path相机参数路径
cooperativebatch_id数据片段编号:车端与路端共享相同的batch_id
cooperativeintersection_loc数据采集所在路口名称
cooperativebatch_start_id数据片段起始编号
cooperativebatch_end_id数据片段结束编号

七、示例数据效果

 示例图像数据:

 

分享完毕~

这篇关于3D目标检测数据集 DAIR-V2X-V的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/194103

相关文章

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

Redis的数据过期策略和数据淘汰策略

《Redis的数据过期策略和数据淘汰策略》本文主要介绍了Redis的数据过期策略和数据淘汰策略,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录一、数据过期策略1、惰性删除2、定期删除二、数据淘汰策略1、数据淘汰策略概念2、8种数据淘汰策略

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

Python给Excel写入数据的四种方法小结

《Python给Excel写入数据的四种方法小结》本文主要介绍了Python给Excel写入数据的四种方法小结,包含openpyxl库、xlsxwriter库、pandas库和win32com库,具有... 目录1. 使用 openpyxl 库2. 使用 xlsxwriter 库3. 使用 pandas 库

SpringBoot定制JSON响应数据的实现

《SpringBoot定制JSON响应数据的实现》本文主要介绍了SpringBoot定制JSON响应数据的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录前言一、如何使用@jsonView这个注解?二、应用场景三、实战案例注解方式编程方式总结 前言

使用Python在Excel中创建和取消数据分组

《使用Python在Excel中创建和取消数据分组》Excel中的分组是一种通过添加层级结构将相邻行或列组织在一起的功能,当分组完成后,用户可以通过折叠或展开数据组来简化数据视图,这篇博客将介绍如何使... 目录引言使用工具python在Excel中创建行和列分组Python在Excel中创建嵌套分组Pyt

在Rust中要用Struct和Enum组织数据的原因解析

《在Rust中要用Struct和Enum组织数据的原因解析》在Rust中,Struct和Enum是组织数据的核心工具,Struct用于将相关字段封装为单一实体,便于管理和扩展,Enum用于明确定义所有... 目录为什么在Rust中要用Struct和Enum组织数据?一、使用struct组织数据:将相关字段绑

在Mysql环境下对数据进行增删改查的操作方法

《在Mysql环境下对数据进行增删改查的操作方法》本文介绍了在MySQL环境下对数据进行增删改查的基本操作,包括插入数据、修改数据、删除数据、数据查询(基本查询、连接查询、聚合函数查询、子查询)等,并... 目录一、插入数据:二、修改数据:三、删除数据:1、delete from 表名;2、truncate

Java实现Elasticsearch查询当前索引全部数据的完整代码

《Java实现Elasticsearch查询当前索引全部数据的完整代码》:本文主要介绍如何在Java中实现查询Elasticsearch索引中指定条件下的全部数据,通过设置滚动查询参数(scrol... 目录需求背景通常情况Java 实现查询 Elasticsearch 全部数据写在最后需求背景通常情况下

Java中注解与元数据示例详解

《Java中注解与元数据示例详解》Java注解和元数据是编程中重要的概念,用于描述程序元素的属性和用途,:本文主要介绍Java中注解与元数据的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参... 目录一、引言二、元数据的概念2.1 定义2.2 作用三、Java 注解的基础3.1 注解的定义3.2 内