回归预测 | MATLAB实现实现FOA-BP果蝇算法优化BP神经网络多变量输入回归预测模型

本文主要是介绍回归预测 | MATLAB实现实现FOA-BP果蝇算法优化BP神经网络多变量输入回归预测模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

回归预测 | MATLAB实现实现FOA-BP果蝇算法优化BP神经网络多变量输入回归预测模型

目录

    • 回归预测 | MATLAB实现实现FOA-BP果蝇算法优化BP神经网络多变量输入回归预测模型
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

1
2

4

基本介绍

果蝇算法(FOA)优化BP神经网络回归预测,FOA-BP回归预测,多变量输入模型
1.输入多个特征,输出单个变量,多输入单输出;
2.评价指标包括MAPE、RMSE、MSE;
3.果蝇算法(FOA)优化BP神经网络权值和阈值。

3

FOA-BP算法是一种基于果蝇算法和BP神经网络的优化算法,用于多变量输入回归预测模型的优化。
在FOA-BP算法中,首先使用果蝇算法对BP神经网络的初始权值和偏置进行优化,以提高BP神经网络的性能和收敛速度。然后,使用优化后的BP神经网络对多变量输入进行回归预测。
FOA-BP算法的优点是可以提高BP神经网络的性能和收敛速度,同时可以更好地处理多变量输入的回归预测问题。此外,该算法还具有较好的鲁棒性和泛化能力,适用于不同的数据集和预测问题。
需要注意的是,FOA-BP算法需要进行大量的计算和参数调整,因此在应用时需要进行充分的实验和验证,以确保算法的可靠性和有效性。

程序设计

  • 完整程序和数据下载方式1(资源处直接下载):MATLAB实现实现FOA-BP果蝇算法优化BP神经网络多变量输入回归预测模型
  • 完整程序和数据下载方式2(订阅《智能学习》专栏,同时获取《智能学习》专栏收录程序3份,数据订阅后私信我获取):MATLAB实现实现FOA-BP果蝇算法优化BP神经网络多变量输入回归预测模型
% X = zeros(1 * dim);
% Y = zeros(1 * dim);
% new_X = zeros(1 * dim);
% new_Y = zeros(1 * dim);
% D = zeros(1 * dim);
% Sol = zeros(1 * dim);
% Fitness = zeros(n * 1);
net = {};%用于存储网络
% Initialize the original position
for i = 1:nX(i,:) = lb+(ub-lb).*rand(1,dim); % the position of X axisY(i,:) = lb+(ub-lb).*rand(1,dim); % the position of Y axisD(i,:) = (X(i,:).^2 + Y(i,:).^2).^0.5; % Caculate the distanceSol(i,:) = 1./D(i,:); % the solution set[Fitness(i),net{i}] = fun(Sol(i,:)); % Caculate the fitness
end[bestSmell,index] = min(Fitness); % Get the min fitness and its index
new_X = X(index,:); % the X axis of min fitness
new_Y = Y(index,:); % the Y axis of min fitness
Smellbest = bestSmell;
best = Sol(index,:);
BestNet = net{index};%最佳网络
% Start main loop
for t = 1:maxtdisp(['第',num2str(t),'次迭代'])for i = 1:n% Refer to the process of initializingX(i,:) = new_X + (ub - lb).*rand();Y(i,:) = new_Y + (ub - lb).*rand();D(i,:) = (X(i,:).^2 + Y(i,:).^2).^0.5;Sol(i,:) = 1./D(i,:);[Fitness(i),net{i}] = fun(Sol(i,:));end[bestSmell,index] = min(Fitness);% If the new value is smaller than the best value,update the best valueif (bestSmell < Smellbest)X(i,:) = X(index,:);Y(i,:) = Y(index,:);Smellbest = bestSmell;BestNet = net{index};end% Out put result each 100 iterationsif round(t/100) == (t/100)Smellbest;endcg_curve(t) = Smellbest;bestFitValue = Smellbest;bestSolution = best;

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

这篇关于回归预测 | MATLAB实现实现FOA-BP果蝇算法优化BP神经网络多变量输入回归预测模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/192660

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同

Java实现文件图片的预览和下载功能

《Java实现文件图片的预览和下载功能》这篇文章主要为大家详细介绍了如何使用Java实现文件图片的预览和下载功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... Java实现文件(图片)的预览和下载 @ApiOperation("访问文件") @GetMapping("

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定