回归预测 | MATLAB实现实现FOA-BP果蝇算法优化BP神经网络多变量输入回归预测模型

本文主要是介绍回归预测 | MATLAB实现实现FOA-BP果蝇算法优化BP神经网络多变量输入回归预测模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

回归预测 | MATLAB实现实现FOA-BP果蝇算法优化BP神经网络多变量输入回归预测模型

目录

    • 回归预测 | MATLAB实现实现FOA-BP果蝇算法优化BP神经网络多变量输入回归预测模型
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

1
2

4

基本介绍

果蝇算法(FOA)优化BP神经网络回归预测,FOA-BP回归预测,多变量输入模型
1.输入多个特征,输出单个变量,多输入单输出;
2.评价指标包括MAPE、RMSE、MSE;
3.果蝇算法(FOA)优化BP神经网络权值和阈值。

3

FOA-BP算法是一种基于果蝇算法和BP神经网络的优化算法,用于多变量输入回归预测模型的优化。
在FOA-BP算法中,首先使用果蝇算法对BP神经网络的初始权值和偏置进行优化,以提高BP神经网络的性能和收敛速度。然后,使用优化后的BP神经网络对多变量输入进行回归预测。
FOA-BP算法的优点是可以提高BP神经网络的性能和收敛速度,同时可以更好地处理多变量输入的回归预测问题。此外,该算法还具有较好的鲁棒性和泛化能力,适用于不同的数据集和预测问题。
需要注意的是,FOA-BP算法需要进行大量的计算和参数调整,因此在应用时需要进行充分的实验和验证,以确保算法的可靠性和有效性。

程序设计

  • 完整程序和数据下载方式1(资源处直接下载):MATLAB实现实现FOA-BP果蝇算法优化BP神经网络多变量输入回归预测模型
  • 完整程序和数据下载方式2(订阅《智能学习》专栏,同时获取《智能学习》专栏收录程序3份,数据订阅后私信我获取):MATLAB实现实现FOA-BP果蝇算法优化BP神经网络多变量输入回归预测模型
% X = zeros(1 * dim);
% Y = zeros(1 * dim);
% new_X = zeros(1 * dim);
% new_Y = zeros(1 * dim);
% D = zeros(1 * dim);
% Sol = zeros(1 * dim);
% Fitness = zeros(n * 1);
net = {};%用于存储网络
% Initialize the original position
for i = 1:nX(i,:) = lb+(ub-lb).*rand(1,dim); % the position of X axisY(i,:) = lb+(ub-lb).*rand(1,dim); % the position of Y axisD(i,:) = (X(i,:).^2 + Y(i,:).^2).^0.5; % Caculate the distanceSol(i,:) = 1./D(i,:); % the solution set[Fitness(i),net{i}] = fun(Sol(i,:)); % Caculate the fitness
end[bestSmell,index] = min(Fitness); % Get the min fitness and its index
new_X = X(index,:); % the X axis of min fitness
new_Y = Y(index,:); % the Y axis of min fitness
Smellbest = bestSmell;
best = Sol(index,:);
BestNet = net{index};%最佳网络
% Start main loop
for t = 1:maxtdisp(['第',num2str(t),'次迭代'])for i = 1:n% Refer to the process of initializingX(i,:) = new_X + (ub - lb).*rand();Y(i,:) = new_Y + (ub - lb).*rand();D(i,:) = (X(i,:).^2 + Y(i,:).^2).^0.5;Sol(i,:) = 1./D(i,:);[Fitness(i),net{i}] = fun(Sol(i,:));end[bestSmell,index] = min(Fitness);% If the new value is smaller than the best value,update the best valueif (bestSmell < Smellbest)X(i,:) = X(index,:);Y(i,:) = Y(index,:);Smellbest = bestSmell;BestNet = net{index};end% Out put result each 100 iterationsif round(t/100) == (t/100)Smellbest;endcg_curve(t) = Smellbest;bestFitValue = Smellbest;bestSolution = best;

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

这篇关于回归预测 | MATLAB实现实现FOA-BP果蝇算法优化BP神经网络多变量输入回归预测模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/192660

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖