R实现动态条件相关模型与GARCH模型结合研究中美股市动态相关性(DCC-GARCH模型)

本文主要是介绍R实现动态条件相关模型与GARCH模型结合研究中美股市动态相关性(DCC-GARCH模型),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

      大家好,我是带我去滑雪!

      中美两国是全球最大的经济体,其经济活动对全球产业链和贸易体系都具有巨大影响。中美之间的经济互动包括大规模的贸易、投资和金融往来。这些互动不仅仅反映在经济数据上,还体现在股市上。中美股市的联动关系反映了全球化时代的现实。它们的表现不仅关乎两国自身经济,还对全球经济和金融市场有着深远的影响。因此,了解和关注这种联动关系对投资者、政策制定者和全球市场观察者来说都至关重要。本期使用DCC-GARCH模型研究近20年中美股市的动态相关性。

目录

一、数据搜集与预处理

(1)收益率的描述统计

(2)ADF平稳性检验

(3)ARCH效应检验

(4)绘制指数与收益率的时序图

二、DCC-GARCH的估计

(1)估计结果

(2) 绘制DCC估计后的条件均值图、条件方差图、条件协方差图 、动态条件相关系数图


一、数据搜集与预处理

        目标是选用S&P综合指数(GSPC)的周对数收益率作为美国股市的市场收益率,选用上证综合指数(SSEC)的周对数收益率作为中国股市的市场收益率。数据样本区间为1997年7月到2017年7月,共计1048例收盘价,数据均来源于雅虎财经。由于获取的原始数据是指数的收盘价,因此可以先求得指数的收益率,并放大100倍。下面对收益率进行时间序列数据建模前的各自准备工作,包括收益率的描述统计、平稳性检验、ARCH效应检验,下面分别一一进行。

install.packages("fBasics",repos="http://mirrors.tuna.tsinghua.edu.cn/CRAN/")
install.packages("FinTS",repos="http://mirrors.tuna.tsinghua.edu.cn/CRAN/")
install.packages("rmgarch",repos="http://mirrors.tuna.tsinghua.edu.cn/CRAN/")
install.packages("MTS",repos="http://mirrors.tuna.tsinghua.edu.cn/CRAN/")
library(fBasics);library(FinTS);library(tseries)
library(rmgarch);library(MTS)

#安装并调用包

dat1.tmp <- read.csv("E:/GSPC.csv"); head(dat1.tmp)
dat2.tmp <- read.csv("E:/SSEC.csv"); head(dat2.tmp)

#导入数据

dat1=xts::as.xts(dat1.tmp[,2],as.Date(dat1.tmp[,1]))
dat2=xts::as.xts(dat2.tmp[,2],as.Date(dat2.tmp[,1]))
head(dat1);head(dat2)

#将导入的数据转换为时间序列格式

R1=diff(log(dat1))*100;R1=R1[-1]   #Compute Returns
names(R1)="GSPC";head(R1)

R2=diff(log(dat2))*100;R2=R2[-1]   #Compute Returns
names(R2)="SSEC" ;head(R2)

#求得指数的收益率,并放大100倍

输出结果:

                SSEC
1997-07-13  4.658029
1997-07-20 -3.276194
1997-07-27  1.858668
1997-08-03  1.102607
1997-08-10 -5.364068
1997-08-17  2.485685

                 GSPC
1997-07-13 -0.1506572
1997-07-20  2.5339921
1997-07-27  0.8855145
1997-08-03 -1.4463145
1997-08-10 -3.5689432
1997-08-17  2.4919732

(1)收益率的描述统计

DataRet=na.omit(cbind(R1,R2));#去除缺失值
tail(DataRet);nrow(DataRet)#展示最后6行,并计算收益率长度

输出结果:

                 GSPC      SSEC
2017-06-25 -0.61254923 1.0882729
2017-07-02  0.07301175 0.7965253
2017-07-09  1.39588457 0.1385001
2017-07-16  0.53814120 0.4818579
2017-07-23 -0.01779466 0.4701144
2017-07-30  0.19115167 0.2713932
[1] 1047
basicStats(DataRet)

输出结果:

                   GSPC        SSEC
nobs        1047.000000 1047.000000
NAs            0.000000    0.000000
Minimum      -20.083751  -14.897934
Maximum       11.355896   13.944743
1. Quartile   -1.137209   -1.738476
3. Quartile    1.404862    1.904221
Mean           0.094936    0.099183
Median         0.196563    0.050927
Sum           99.397639  103.844343
SE Mean        0.076118    0.103059
LCL Mean      -0.054426   -0.103043
UCL Mean       0.244297    0.301408
Variance       6.066269   11.120290
Stdev          2.462980    3.334710
Skewness      -0.775533   -0.128495
Kurtosis       6.394769    2.291610

(2)ADF平稳性检验

adf.test(R1);

输出结果:

    Augmented Dickey-Fuller Test

data:  R1
Dickey-Fuller = -9.8464, Lag order = 10, p-value = 0.01
alternative hypothesis: stationary

adf.test(R2);

输出结果:

    Augmented Dickey-Fuller Test

data:  R2
Dickey-Fuller = -8.1659, Lag order = 10, p-value = 0.01
alternative hypothesis: stationary

        由于 时间序列数据进行建模时,需要了解数据的平稳性,以保证模型的有效性。通过ADF检验可以发现中美股市收益率是平稳的。

(3)ARCH效应检验

ArchTest(R1,lags=15,demean=T)

输出结果:

    ARCH LM-test; Null hypothesis: no ARCH effects

data:  R1
Chi-squared = 158.22, df = 15, p-value < 2.2e-16

ArchTest(R2,lags=15,demean=T)

输出结果:

    ARCH LM-test; Null hypothesis: no ARCH effects

data:  R2
Chi-squared = 127.52, df = 15, p-value < 2.2e-16

       通过ARCH检验可以发现中美股市收益率之间存在ARCH效应,说明可以运用GARCH模型。

(4)绘制指数与收益率的时序图

opar=par(no.readonly=T)
par(mfrow=c(2,2))
plot(dat1,main="GSPC",xlab="Time",ylab="Index")
plot(dat2,main="SSEC",xlab="Time",ylab="Index")
plot(R1,main="GSPC",xlab="Time",ylab="log return")
plot(R2,main="SSEC",xlab="Time",ylab="log return")
par(opar)

输出结果:

       通过时序图可以发现,美国收益率指数虽然在互联网泡沫和次贷危机期间大幅度下降,但大部分时期指数是上涨的。而中国指数在2007年到2008年以及2015年到2016年两个时间段显著大涨大跌,其他时期的走势相对平稳,但上行行情远没有美国的多。通过收益率的时序图可以发现,中美两国收益率都存在显著的波动聚集现象,并且中国的波动幅度大于美国的波动。

二、DCC-GARCH的估计

(1)估计结果

n=ncol(DataRet)
p=1;q=1
meanSpec=list(armaOrder=c(1,0),include.mean=TRUE,archpow=1)
varSpec=list(model="sGARCH",garchOrder = c(p,q))
distSpec=c("mvt") #c("mvnorm", "mvt", "mvlaplace")

spec1=ugarchspec(mean.model=meanSpec,variance.model=varSpec)
mySpec=multispec(replicate(n, spec1))

mySpec=dccspec(mySpec, VAR=F, robust=F, lag=1, lag.max=NULL,lag.criterion=c("AIC"), external.regressors = NULL,    robust.control = list(gamma = 0.25, delta = 0.01, nc = 10, ns = 500),    dccOrder = c(1, 1),    distribution = distSpec, start.pars = list(), fixed.pars = list())
fit_dcc=dccfit(data=DataRet, mySpec, out.sample=10, solver="solnp", solver.control = list(), fit.control = list(eval.se = TRUE, stationarity = TRUE, scale = FALSE), parallel = TRUE, parallel.control = list(pkg = c("multicore"), cores = 2), fit = NULL, VAR.fit = NULL)
RSD=residuals(fit_dcc);
show(fit_dcc)

输出结果:


*---------------------------------*
*          DCC GARCH Fit          *
*---------------------------------*

Distribution         :  mvt
Model                :  DCC(1,1)
No. Parameters       :  14
[VAR GARCH DCC UncQ] : [0+10+3+1]
No. Series           :  2
No. Obs.             :  1037
Log-Likelihood       :  -4863.167
Av.Log-Likelihood    :  -4.69 

Optimal Parameters
-----------------------------------
               Estimate  Std. Error  t value Pr(>|t|)
[GSPC].mu      0.215241    0.055014   3.9125 0.000091
[GSPC].ar1    -0.112713    0.034833  -3.2359 0.001213
[GSPC].omega   0.302235    0.131215   2.3034 0.021259
[GSPC].alpha1  0.196408    0.060734   3.2339 0.001221
[GSPC].beta1   0.762232    0.064558  11.8069 0.000000
[SSEC].mu      0.078023    0.096492   0.8086 0.418748
[SSEC].ar1     0.053512    0.034308   1.5598 0.118816
[SSEC].omega   0.388848    0.206514   1.8829 0.059712
[SSEC].alpha1  0.117551    0.036551   3.2161 0.001300
[SSEC].beta1   0.848819    0.047688  17.7993 0.000000
[Joint]dcca1   0.013581    0.007305   1.8591 0.063013
[Joint]dccb1   0.971799    0.011366  85.5008 0.000000
[Joint]mshape  8.290728    1.110120   7.4683 0.000000

Information Criteria
---------------------
                   
Akaike       9.4063
Bayes        9.4730
Shibata      9.4059
Hannan-Quinn 9.4316


Elapsed time : 3.121074 

(2) 绘制DCC估计后的条件均值图、条件方差图、条件协方差图 、动态条件相关系数图

plot(fit_dcc)

需要数据集的家人们可以去百度网盘(永久有效)获取:

链接:https://pan.baidu.com/s/1E59qYZuGhwlrx6gn4JJZTg?pwd=2138
提取码:2138 


更多优质内容持续发布中,请移步主页查看。

   点赞+关注,下次不迷路!

这篇关于R实现动态条件相关模型与GARCH模型结合研究中美股市动态相关性(DCC-GARCH模型)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/191883

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

第10章 中断和动态时钟显示

第10章 中断和动态时钟显示 从本章开始,按照书籍的划分,第10章开始就进入保护模式(Protected Mode)部分了,感觉从这里开始难度突然就增加了。 书中介绍了为什么有中断(Interrupt)的设计,中断的几种方式:外部硬件中断、内部中断和软中断。通过中断做了一个会走的时钟和屏幕上输入字符的程序。 我自己理解中断的一些作用: 为了更好的利用处理器的性能。协同快速和慢速设备一起工作

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

sqlite3 相关知识

WAL 模式 VS 回滚模式 特性WAL 模式回滚模式(Rollback Journal)定义使用写前日志来记录变更。使用回滚日志来记录事务的所有修改。特点更高的并发性和性能;支持多读者和单写者。支持安全的事务回滚,但并发性较低。性能写入性能更好,尤其是读多写少的场景。写操作会造成较大的性能开销,尤其是在事务开始时。写入流程数据首先写入 WAL 文件,然后才从 WAL 刷新到主数据库。数据在开始

动态规划---打家劫舍

题目: 你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。 给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。 思路: 动态规划五部曲: 1.确定dp数组及含义 dp数组是一维数组,dp[i]代表

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo