深度学习_人脸检测_基于多任务卷积神经网络(MTCNN)论文详解

本文主要是介绍深度学习_人脸检测_基于多任务卷积神经网络(MTCNN)论文详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

首先上论文地址:
Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks

一.MTCNN工作流程图

首先我们看一下MTCNN的工作流程图:

在这里插入图片描述

注意:训练阶段使用的图片都是 12 × 12 12\times 12 12×12去训练P-Net,而在inference的时候,图像大小不受限制。

图像金字塔的作用:可以进行不同大小的人头的推理,达到尺度不变性。

二.MTCNN的模型结构

MTCNN模型有三个子网络。

分别是P-Net,R-Net,O-Net。

  1. Proposal Network(P-Net):该网络结构主要获得了人脸区域的候选窗口和边界框的回归向量。并用该边界框做回归,对候选窗口进行校准,然后通过非极大值抑制(NMS)来合并高度重合的候选框。
  2. Refine network(R-Net):该网络结构还是通过边界框回归和NMS来去掉那些false-positive区域。只是由于该网络结构和P-Net网络结构有差异,多了一个全连接层,所以会取得更好的抑制false-positive的作用。
  3. Output Network(O-Net):该层比R-Net层又多了一层卷积层,所以处理的结果会更加精细。作用和R-Net层作用一样。但是该层对人脸区域进行了更多的监督,同时还会输出5个地标(landmark)

下面我们来看看详细的网络结构:

在这里插入图片描述
建立模型的一些考虑:

  1. 把5 * 5卷积换成3 * 3卷积,能减少计算量,并增加深度。
  2. 非线性激活函数使用PReLU。

更加详细的网络结构

分别为det1,det2,det3。

det1.prototxt结构:

在这里插入图片描述

det2.prototxt结构:

在这里插入图片描述

det3.prototxt结构:

在这里插入图片描述

为了检测不同大小的人脸,开始需要构建图像金字塔,先经过P-Net模型,输出人脸类别和边界框(边界框的预测为了对特征图映射到原图的框平移和缩放得到更准确的框),将识别为人脸的框映射到原图框位置可以获取patch,之后每一个patch通过resize的方式输入到R-Net,识别为人脸的框并且预测更加准确的人脸框,最后R-Net识别为人脸的每一个patch通过resize的方式输入到O-Net,跟R-Net类似,关键点是为了在训练集有限情况下使模型更鲁棒

注意:构建图像金字塔的缩放比例要保留,为了将边界框映射到最开会原图上。

三.MTCNN的主要公式

MTCNN特征描述子主要包含3个部分,人脸/非人脸分类器,边界框回归,地标定位。

人脸分类

在这里插入图片描述

上式为人脸分类的交叉熵损失函数,其中pi为是人脸的概率,yidet 为ground-truth标签。

边界框回归

在这里插入图片描述

上式为通过欧式距离计算的回归损失,使得这个过程成为回归问题。其中,带尖儿的y为通过网络预测得到,不带尖儿的y为实际的ground-truth坐标。其中,y为一个(左上角x,左上角y,长,宽)组成的四元组。

地标定位

在这里插入图片描述

和边界回归一样这也是一个回归问题,还是计算网络预测的地标位置和实际真是地标位置的欧式距离,并最小化该距离。其中,带尖儿的y为通过网路预测得到,不带尖儿的y为实际的ground-truth地标坐标。由于一共5个点(左右眼睛,嘴巴,左右嘴角),每个点有x和y2个坐标,所以y属于十元组。

多个输入源的训练

在这里插入图片描述

整个的训练学习过程就是最小化上面的这个函数,其中N为训练样本的数量,aj 表示任务的重要性,bj 为样本标签,Lj 为上面的损失函数。

Online Hard sample mining(OHEM)

这个概念是什么意思呢?
答:寻找出比较刚的样本,好好炼它!!!

有别于传统的硬样本挖掘,我们进行在线硬样本挖掘,与训练过程相适应。

在小批量样本训练过程中,为了取得更好的效果,我们从所有样本中对正向传播计算出的损失进行排序,并选择损失最高的前70%样本作为硬样本,然后我们只计算反向传播中这些硬样本的梯度,这样一来保证传递的都是有效的数字。有点类似latent SVM,只是作者在实现上更加体现了深度学习的end-to-end。

四.训练

论文中使用的数据集

  1. FDDB
  2. WIDER
  3. AFLW

数据集的标注有4类

  1. Positive face数据(正样本)
  2. Negative face数据(负样本)
  3. Part face数据(部分人脸样本)
  4. landmark face数据(地标)

训练样本的比例负样本:正样本:Part样本:地标 = 3:1:1:2

交并比IoU(Intersection-over-Union)比例

在训练过程中,y尖儿和y的交并比比例为:

  1. 0-0.3:负样本
  2. 0.4-0.65:部分人脸样本
  3. 0.65-1:正样本

各个数据集如何使用

  1. 网络做人脸分类的时候,使用Positives和Negatives的图片来做,容易使模型收敛。
  2. 网络做人脸bbox的偏移量回归的时候,使用Positives和Parts的数据,比较好的使得bbox回归。
  3. 网络在进行人脸landmark回归的时候,只使用landmark face数据集。

训练效果

在线硬样本挖掘的有效性:
在这里插入图片描述

joint detection and alignment的有效性:

在这里插入图片描述

人脸检测的效果与其他算法进行对比:

在这里插入图片描述

运行的时间效率:

在这里插入图片描述

优化方法及思路

  1. 将landmark加入到前面两个网络进行训练。因为landmark是基于bbox的左上角坐标做偏移的,这样做会使得bbox的损失函数和landmark损失函数相关联。这个影响应该是正向的,论文里也提到landmark的预测也有利于bbox预测的更好。所以将landmark加入到前面两个网络做训练其实是有利于bbox预测的更好,为第三层真正预测landmark打下基础。
  2. P-Net是为了能产生proposal,但是因为要多次缩放在执行推理,这样的效率比不上batch处理,所以可以进行多模型多GPU并行,经过了P-Net后,R-Net和O-Net进行batch。
  3. 在截图中没有人脸的部分,可以标注负值。

这篇关于深度学习_人脸检测_基于多任务卷积神经网络(MTCNN)论文详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/191711

相关文章

MySQL中的交叉连接、自然连接和内连接查询详解

《MySQL中的交叉连接、自然连接和内连接查询详解》:本文主要介绍MySQL中的交叉连接、自然连接和内连接查询,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、引入二、交php叉连接(cross join)三、自然连接(naturalandroid join)四

Go 语言中的select语句详解及工作原理

《Go语言中的select语句详解及工作原理》在Go语言中,select语句是用于处理多个通道(channel)操作的一种控制结构,它类似于switch语句,本文给大家介绍Go语言中的select语... 目录Go 语言中的 select 是做什么的基本功能语法工作原理示例示例 1:监听多个通道示例 2:带

mysql的基础语句和外键查询及其语句详解(推荐)

《mysql的基础语句和外键查询及其语句详解(推荐)》:本文主要介绍mysql的基础语句和外键查询及其语句详解(推荐),本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋... 目录一、mysql 基础语句1. 数据库操作 创建数据库2. 表操作 创建表3. CRUD 操作二、外键

Spring Boot项目部署命令java -jar的各种参数及作用详解

《SpringBoot项目部署命令java-jar的各种参数及作用详解》:本文主要介绍SpringBoot项目部署命令java-jar的各种参数及作用的相关资料,包括设置内存大小、垃圾回收... 目录前言一、基础命令结构二、常见的 Java 命令参数1. 设置内存大小2. 配置垃圾回收器3. 配置线程栈大小

鸿蒙中@State的原理使用详解(HarmonyOS 5)

《鸿蒙中@State的原理使用详解(HarmonyOS5)》@State是HarmonyOSArkTS框架中用于管理组件状态的核心装饰器,其核心作用是实现数据驱动UI的响应式编程模式,本文给大家介绍... 目录一、@State在鸿蒙中是做什么的?二、@Spythontate的基本原理1. 依赖关系的收集2.

Redis实现延迟任务的三种方法详解

《Redis实现延迟任务的三种方法详解》延迟任务(DelayedTask)是指在未来的某个时间点,执行相应的任务,本文为大家整理了三种常见的实现方法,感兴趣的小伙伴可以参考一下... 目录1.前言2.Redis如何实现延迟任务3.代码实现3.1. 过期键通知事件实现3.2. 使用ZSet实现延迟任务3.3

C语言函数递归实际应用举例详解

《C语言函数递归实际应用举例详解》程序调用自身的编程技巧称为递归,递归做为一种算法在程序设计语言中广泛应用,:本文主要介绍C语言函数递归实际应用举例的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录前言一、递归的概念与思想二、递归的限制条件 三、递归的实际应用举例(一)求 n 的阶乘(二)顺序打印

Python Faker库基本用法详解

《PythonFaker库基本用法详解》Faker是一个非常强大的库,适用于生成各种类型的伪随机数据,可以帮助开发者在测试、数据生成、或其他需要随机数据的场景中提高效率,本文给大家介绍PythonF... 目录安装基本用法主要功能示例代码语言和地区生成多条假数据自定义字段小结Faker 是一个 python

Java Predicate接口定义详解

《JavaPredicate接口定义详解》Predicate是Java中的一个函数式接口,它代表一个判断逻辑,接收一个输入参数,返回一个布尔值,:本文主要介绍JavaPredicate接口的定义... 目录Java Predicate接口Java lamda表达式 Predicate<T>、BiFuncti

详解如何通过Python批量转换图片为PDF

《详解如何通过Python批量转换图片为PDF》:本文主要介绍如何基于Python+Tkinter开发的图片批量转PDF工具,可以支持批量添加图片,拖拽等操作,感兴趣的小伙伴可以参考一下... 目录1. 概述2. 功能亮点2.1 主要功能2.2 界面设计3. 使用指南3.1 运行环境3.2 使用步骤4. 核