第83步 时间序列建模实战:Catboost回归建模

2023-10-11 13:15

本文主要是介绍第83步 时间序列建模实战:Catboost回归建模,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于WIN10的64位系统演示

一、写在前面

这一期,我们介绍Catboost回归。

同样,这里使用这个数据:

《PLoS One》2015年一篇题目为《Comparison of Two Hybrid Models for Forecasting the Incidence of Hemorrhagic Fever with Renal Syndrome in Jiangsu Province, China》文章的公开数据做演示。数据为江苏省2004年1月至2012年12月肾综合症出血热月发病率。运用2004年1月至2011年12月的数据预测2012年12个月的发病率数据。

二、Catboost回归

(1)参数解读

无论是回归还是分类,CatBoost的大部分参数都是通用的,但任务的不同性质意味着一些参数可能只在一个任务中有意义。

以下是一些关键参数的简要概述:

(a)通用参数:

learning_rate: 学习率,决定了模型每一步的步长。常用的值为0.01, 0.03, 0.1等。

iterations: 树的数量。

depth: 树的深度。

l2_leaf_reg: L2正则化项的系数。

cat_features: 分类特征的列索引列表。

loss_function: 损失函数。对于分类,常见的是Logloss(二分类)或MultiClass(多分类)。对于回归,常见的是RMSE。

border_count: 用于数值特征的分箱数量。较高的值可能会导致过拟合,较低的值可能会导致欠拟合。

verbose: 显示的训练日志的详细程度。

(b)专用于分类的参数:

classes_count: 在多分类任务中,类别的数量。

class_weights: 各类的权重,用于不平衡分类任务。

auto_class_weights: 用于处理类不平衡的自动权重计算方法。

(c)专用于回归的参数:

scale_pos_weight: 用于不平衡的回归任务。

(d)异同点:

相同点: 大部分参数(如learning_rate, depth, l2_leaf_reg等)在回归和分类任务中都是相同的,并且它们的含义和效果也是一致的。

不同点: 损失函数loss_function是根据任务(回归或分类)来确定的。此外,某些参数(如classes_count和class_weights)仅在分类任务中有意义,而scale_pos_weight更倾向于回归任务。

此外,在使用CatBoost时,建议始终查阅其官方文档,因为该库可能会经常更新,新的参数或功能可能会被添加进来。网址如下:

https://catboost.ai/docs/

(2)单步滚动预测

import pandas as pd
import numpy as np
from sklearn.metrics import mean_absolute_error, mean_squared_error
from catboost import CatBoostRegressor
from sklearn.model_selection import GridSearchCV# 读取数据
data = pd.read_csv('data.csv')# 将时间列转换为日期格式
data['time'] = pd.to_datetime(data['time'], format='%b-%y')# 创建滞后期特征
lag_period = 6
for i in range(lag_period, 0, -1):data[f'lag_{i}'] = data['incidence'].shift(lag_period - i + 1)# 删除包含 NaN 的行
data = data.dropna().reset_index(drop=True)# 划分训练集和验证集
train_data = data[(data['time'] >= '2004-01-01') & (data['time'] <= '2011-12-31')]
validation_data = data[(data['time'] >= '2012-01-01') & (data['time'] <= '2012-12-31')]# 定义特征和目标变量
X_train = train_data[['lag_1', 'lag_2', 'lag_3', 'lag_4', 'lag_5', 'lag_6']]
y_train = train_data['incidence']
X_validation = validation_data[['lag_1', 'lag_2', 'lag_3', 'lag_4', 'lag_5', 'lag_6']]
y_validation = validation_data['incidence']# 初始化 CatBoostRegressor 模型
catboost_model = CatBoostRegressor(verbose=0)# 定义参数网格
param_grid = {'iterations': [50, 100, 150],'learning_rate': [0.01, 0.05, 0.1, 0.5, 1],'depth': [4, 6, 8],'loss_function': ['RMSE']
}# 初始化网格搜索
grid_search = GridSearchCV(catboost_model, param_grid, cv=5, scoring='neg_mean_squared_error')# 进行网格搜索
grid_search.fit(X_train, y_train)# 获取最佳参数
best_params = grid_search.best_params_# 使用最佳参数初始化 CatBoostRegressor 模型
best_catboost_model = CatBoostRegressor(**best_params, verbose=0)# 在训练集上训练模型
best_catboost_model.fit(X_train, y_train)# 对于验证集,我们需要迭代地预测每一个数据点
y_validation_pred = []for i in range(len(X_validation)):if i == 0:pred = best_catboost_model.predict([X_validation.iloc[0]])else:new_features = list(X_validation.iloc[i, 1:]) + [pred[0]]pred = best_catboost_model.predict([new_features])y_validation_pred.append(pred[0])y_validation_pred = np.array(y_validation_pred)# 计算验证集上的MAE, MAPE, MSE 和 RMSE
mae_validation = mean_absolute_error(y_validation, y_validation_pred)
mape_validation = np.mean(np.abs((y_validation - y_validation_pred) / y_validation))
mse_validation = mean_squared_error(y_validation, y_validation_pred)
rmse_validation = np.sqrt(mse_validation)# 计算训练集上的MAE, MAPE, MSE 和 RMSE
y_train_pred = best_catboost_model.predict(X_train)
mae_train = mean_absolute_error(y_train, y_train_pred)
mape_train = np.mean(np.abs((y_train - y_train_pred) / y_train))
mse_train = mean_squared_error(y_train, y_train_pred)
rmse_train = np.sqrt(mse_train)print("Train Metrics:", mae_train, mape_train, mse_train, rmse_train)
print("Validation Metrics:", mae_validation, mape_validation, mse_validation, rmse_validation)

看结果:

(3)多步滚动预测-vol. 1

对于Catboost回归,目标变量y_train不能是多列的DataFrame,所以你们懂的。

(4)多步滚动预测-vol. 2

同上。

(5)多步滚动预测-vol. 3

import pandas as pd
import numpy as np
from catboost import CatBoostRegressor  # 导入CatBoostRegressor
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import mean_absolute_error, mean_squared_error# 数据读取和预处理
data = pd.read_csv('data.csv')
data_y = pd.read_csv('data.csv')
data['time'] = pd.to_datetime(data['time'], format='%b-%y')
data_y['time'] = pd.to_datetime(data_y['time'], format='%b-%y')n = 6for i in range(n, 0, -1):data[f'lag_{i}'] = data['incidence'].shift(n - i + 1)data = data.dropna().reset_index(drop=True)
train_data = data[(data['time'] >= '2004-01-01') & (data['time'] <= '2011-12-31')]
X_train = train_data[[f'lag_{i}' for i in range(1, n+1)]]
m = 3X_train_list = []
y_train_list = []for i in range(m):X_temp = X_trainy_temp = data_y['incidence'].iloc[n + i:len(data_y) - m + 1 + i]X_train_list.append(X_temp)y_train_list.append(y_temp)for i in range(m):X_train_list[i] = X_train_list[i].iloc[:-(m-1)]y_train_list[i] = y_train_list[i].iloc[:len(X_train_list[i])]# 模型训练
param_grid = {'iterations': [50, 100, 150],'learning_rate': [0.01, 0.05, 0.1, 0.5, 1],'depth': [4, 6, 8]
}best_catboost_models = []for i in range(m):grid_search = GridSearchCV(CatBoostRegressor(verbose=0), param_grid, cv=5, scoring='neg_mean_squared_error')  # 使用CatBoostRegressorgrid_search.fit(X_train_list[i], y_train_list[i])best_catboost_model = CatBoostRegressor(**grid_search.best_params_, verbose=0)best_catboost_model.fit(X_train_list[i], y_train_list[i])best_catboost_models.append(best_catboost_model)validation_start_time = train_data['time'].iloc[-1] + pd.DateOffset(months=1)
validation_data = data[data['time'] >= validation_start_time]X_validation = validation_data[[f'lag_{i}' for i in range(1, n+1)]]
y_validation_pred_list = [model.predict(X_validation) for model in best_catboost_models]
y_train_pred_list = [model.predict(X_train_list[i]) for i, model in enumerate(best_catboost_models)]def concatenate_predictions(pred_list):concatenated = []for j in range(len(pred_list[0])):for i in range(m):concatenated.append(pred_list[i][j])return concatenatedy_validation_pred = np.array(concatenate_predictions(y_validation_pred_list))[:len(validation_data['incidence'])]
y_train_pred = np.array(concatenate_predictions(y_train_pred_list))[:len(train_data['incidence']) - m + 1]mae_validation = mean_absolute_error(validation_data['incidence'], y_validation_pred)
mape_validation = np.mean(np.abs((validation_data['incidence'] - y_validation_pred) / validation_data['incidence']))
mse_validation = mean_squared_error(validation_data['incidence'], y_validation_pred)
rmse_validation = np.sqrt(mse_validation)
print("验证集:", mae_validation, mape_validation, mse_validation, rmse_validation)mae_train = mean_absolute_error(train_data['incidence'][:-(m-1)], y_train_pred)
mape_train = np.mean(np.abs((train_data['incidence'][:-(m-1)] - y_train_pred) / train_data['incidence'][:-(m-1)]))
mse_train = mean_squared_error(train_data['incidence'][:-(m-1)], y_train_pred)
rmse_train = np.sqrt(mse_train)
print("训练集:", mae_train, mape_train, mse_train, rmse_train)

结果:

三、数据

链接:https://pan.baidu.com/s/1EFaWfHoG14h15KCEhn1STg?pwd=q41n

提取码:q41n

这篇关于第83步 时间序列建模实战:Catboost回归建模的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/188296

相关文章

如何利用Java获取当天的开始和结束时间

《如何利用Java获取当天的开始和结束时间》:本文主要介绍如何使用Java8的LocalDate和LocalDateTime类获取指定日期的开始和结束时间,展示了如何通过这些类进行日期和时间的处... 目录前言1. Java日期时间API概述2. 获取当天的开始和结束时间代码解析运行结果3. 总结前言在J

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

关于最长递增子序列问题概述

《关于最长递增子序列问题概述》本文详细介绍了最长递增子序列问题的定义及两种优化解法:贪心+二分查找和动态规划+状态压缩,贪心+二分查找时间复杂度为O(nlogn),通过维护一个有序的“尾巴”数组来高效... 一、最长递增子序列问题概述1. 问题定义给定一个整数序列,例如 nums = [10, 9, 2

修改若依框架Token的过期时间问题

《修改若依框架Token的过期时间问题》本文介绍了如何修改若依框架中Token的过期时间,通过修改`application.yml`文件中的配置来实现,默认单位为分钟,希望此经验对大家有所帮助,也欢迎... 目录修改若依框架Token的过期时间修改Token的过期时间关闭Token的过期时js间总结修改若依

Go Mongox轻松实现MongoDB的时间字段自动填充

《GoMongox轻松实现MongoDB的时间字段自动填充》这篇文章主要为大家详细介绍了Go语言如何使用mongox库,在插入和更新数据时自动填充时间字段,从而提升开发效率并减少重复代码,需要的可以... 目录前言时间字段填充规则Mongox 的安装使用 Mongox 进行插入操作使用 Mongox 进行更

在Java中使用ModelMapper简化Shapefile属性转JavaBean实战过程

《在Java中使用ModelMapper简化Shapefile属性转JavaBean实战过程》本文介绍了在Java中使用ModelMapper库简化Shapefile属性转JavaBean的过程,对比... 目录前言一、原始的处理办法1、使用Set方法来转换2、使用构造方法转换二、基于ModelMapper

Java实战之自助进行多张图片合成拼接

《Java实战之自助进行多张图片合成拼接》在当今数字化时代,图像处理技术在各个领域都发挥着至关重要的作用,本文为大家详细介绍了如何使用Java实现多张图片合成拼接,需要的可以了解下... 目录前言一、图片合成需求描述二、图片合成设计与实现1、编程语言2、基础数据准备3、图片合成流程4、图片合成实现三、总结前

nginx-rtmp-module构建流媒体直播服务器实战指南

《nginx-rtmp-module构建流媒体直播服务器实战指南》本文主要介绍了nginx-rtmp-module构建流媒体直播服务器实战指南,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. RTMP协议介绍与应用RTMP协议的原理RTMP协议的应用RTMP与现代流媒体技术的关系2

对postgresql日期和时间的比较

《对postgresql日期和时间的比较》文章介绍了在数据库中处理日期和时间类型时的一些注意事项,包括如何将字符串转换为日期或时间类型,以及在比较时自动转换的情况,作者建议在使用数据库时,根据具体情况... 目录PostgreSQL日期和时间比较DB里保存到时分秒,需要和年月日比较db里存储date或者ti

C语言小项目实战之通讯录功能

《C语言小项目实战之通讯录功能》:本文主要介绍如何设计和实现一个简单的通讯录管理系统,包括联系人信息的存储、增加、删除、查找、修改和排序等功能,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录功能介绍:添加联系人模块显示联系人模块删除联系人模块查找联系人模块修改联系人模块排序联系人模块源代码如下