视觉SLAM十四讲 从理论到实践-第九讲实践:设计前端,关于Sophus库中SO3类构造函数使用疑惑

本文主要是介绍视觉SLAM十四讲 从理论到实践-第九讲实践:设计前端,关于Sophus库中SO3类构造函数使用疑惑,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在练习视觉SLAM十四讲 从理论到实践-第九讲实践:设计前端实验时,碰到了关于一处使用Sophus库中SO3类构造函数的疑惑。
Sophus库中:

SO3::SO3(double rot_x, double rot_y, double rot_z)
{unit_quaternion_= (SO3::exp(Vector3d(rot_x, 0.f, 0.f))*SO3::exp(Vector3d(0.f, rot_y, 0.f))*SO3::exp(Vector3d(0.f, 0.f, rot_z))).unit_quaternion_;
}

从该构造函数的实现来看, 该函数的参数为欧拉角,书上代码实现时,SO3的构造函数调用却用了从

 cv::solvePnPRansac(pts3d, pts2d, K, Mat(), rvec, tvec, false, 100, 4.0, 0.99, inliers);

获得的旋转向量中的每个对应元素,即

T_c_r_estimated_ = SE3(SO3(rvec.at<double>(0,0), rvec.at<double>(1,0), rvec.at<double>(2,0)), Vector3d( tvec.at<double>(0,0), tvec.at<double>(1,0), tvec.at<double>(2,0)));

,这里显然跟SO3的定义实现是不符合的。起初很是疑惑,甚至想象为旋转向量可以分解为其对应3个元素的欧拉旋转矩阵连乘形式(即SO3定义中所示),但是举例如下:
旋转向量:v=(PI/2, PI/2, 0)
欧拉旋转变化:R = R(X, PI/2) * R(Y, PI/2)
经过作图可以很容易证明,二者是不等价的。且先看正确代码,以及实验结果验证。

void VisualOdometry::poseEstimationPnP()
{vector<cv::Point3f> pts3d;vector<cv::Point2f> pts2d;for(cv::DMatch m : feature_matches_){pts3d.push_back(pts_3d_ref_[m.queryIdx]);pts2d.push_back(keypoints_curr_[m.trainIdx].pt);}Mat K = (cv::Mat_<double>(3,3) <<ref_->camera_->fx_, 0, ref_->camera_->cx_,0, ref_->camera_->fy_, ref_->camera_->cy_,0,0,1);Mat rvec, tvec, inliers;cv::solvePnPRansac(pts3d, pts2d, K, Mat(), rvec, tvec, false, 100, 4.0, 0.99, inliers);num_inliers_ = inliers.rows;cout << "pnp inliers: " << num_inliers_ << endl;// 此处旋转向量经罗德里格斯转换Mat R;cv::Rodrigues(rvec, R);Eigen::Matrix3d RE;RE << R.at<double>(0,0), R.at<double>(0,1), R.at<double>(0,2),R.at<double>(1,0), R.at<double>(1,1), R.at<double>(1,2),R.at<double>(2,0), R.at<double>(2,1), R.at<double>(2,2);// SO3构造函数参数为旋转矩阵T_c_r_estimated_ = SE3(SO3(RE),Vector3d(tvec.at<double>(0,0), tvec.at<double>(1,0), tvec.at<double>(2,0)));// 经验证证明,下式为小旋转量时的近似取值
//    T_c_r_estimated_ = SE3(SO3(rvec.at<double>(0,0), rvec.at<double>(1,0), rvec.at<double>(2,0)),
//                           Vector3d(tvec.at<double>(0,0), tvec.at<double>(1,0), tvec.at<double>(2,0)));// using bundle adjustment to optimize the posetypedef g2o::BlockSolver<g2o::BlockSolverTraits<6,2>> Block;Block::LinearSolverType * linearSolver = new g2o::LinearSolverDense<Block::PoseMatrixType>();Block* solver_ptr = new Block(linearSolver);g2o::OptimizationAlgorithmLevenberg * solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);g2o::SparseOptimizer optimizer;optimizer.setAlgorithm(solver);

书上原来的代码,无BA优化的部分结果:
VO costs time: 0.03461
extract keypoints cost time: 0.006476
descriptor computation cost time: 0.006352
good matches: 415
match cost time: 0.015432
pnp inliers: 411
0.00138308 -0.00248132 0.00178398
0.000308052 0.00147007 -0.000874968

VO costs time: 0.029812
extract keypoints cost time: 0.010289
descriptor computation cost time: 0.00585
good matches: 400
match cost time: 0.016064
pnp inliers: 397
-0.000784515 -0.000247304 0.000747317
0.00129301 0.00148954 0.000108656

VO costs time: 0.033383
extract keypoints cost time: 0.00711
descriptor computation cost time: 0.005964
good matches: 398
match cost time: 0.015669
pnp inliers: 394
-0.00211969 0.00225218 0.00112379
-0.000926058 0.000652907 0.000526384

VO costs time: 0.030122
/home/liqiang/Practise/vslam/slambook/exe/project/version0.1/VslamLearn/bin/run_vo exited with code 0

书上原来的代码,经BA优化的部分结果:

VO costs time: 0.032901
extract keypoints cost time: 0.006294
descriptor computation cost time: 0.006143
good matches: 415
match cost time: 0.015853
pnp inliers: 411
0.00138529 -0.00248009 0.0017857
0.000308052 0.00147007 -0.000874968

VO costs time: 0.030218
extract keypoints cost time: 0.006495
descriptor computation cost time: 0.006036
good matches: 400
match cost time: 0.016007
pnp inliers: 397
-0.000784422 -0.000247597 0.00074722
0.00129301 0.00148954 0.000108656

VO costs time: 0.030737
extract keypoints cost time: 0.006861
descriptor computation cost time: 0.00613
good matches: 398
match cost time: 0.015736
pnp inliers: 394
-0.00212096 0.00225099 0.00112618
-0.000926058 0.000652907 0.000526384

VO costs time: 0.030701
/home/liqiang/Practise/vslam/slambook/exe/project/version0.1/VslamLearn/bin/run_vo exited with code 0

旋转向量经罗德里格斯处理得到旋转矩阵后调用SO3构造函数的结果(没有BA优化):
VO costs time: 0.03079
extract keypoints cost time: 0.007631
descriptor computation cost time: 0.006795
good matches: 415
match cost time: 0.016033
pnp inliers: 411
0.00138529 -0.00248009 0.0017857
0.000308052 0.00147007 -0.000874968

VO costs time: 0.031775
extract keypoints cost time: 0.006933
descriptor computation cost time: 0.006023
good matches: 400
match cost time: 0.015726
pnp inliers: 397
-0.000784422 -0.000247597 0.00074722
0.00129301 0.00148954 0.000108656

VO costs time: 0.029855
extract keypoints cost time: 0.007465
descriptor computation cost time: 0.006319
good matches: 398
match cost time: 0.015806
pnp inliers: 394
-0.00212096 0.00225099 0.00112618
-0.000926058 0.000652907 0.000526384

VO costs time: 0.030947
/home/liqiang/Practise/vslam/slambook/exe/project/version0.1/VslamLearn/bin/run_vo exited with code 0

3组实验结果说明,SO3用小的旋转向量对应元素初始化时,结果与正确结果非常接近,误差很小。同时,当旋转向量经过罗德里格斯转换为旋转矩阵后初始化SO3的结果,即使没有经过BA优化,其结果却和BA优化后的结果一模一样。为此疑惑也便得解。

这篇关于视觉SLAM十四讲 从理论到实践-第九讲实践:设计前端,关于Sophus库中SO3类构造函数使用疑惑的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/186440

相关文章

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Spring Boot中WebSocket常用使用方法详解

《SpringBoot中WebSocket常用使用方法详解》本文从WebSocket的基础概念出发,详细介绍了SpringBoot集成WebSocket的步骤,并重点讲解了常用的使用方法,包括简单消... 目录一、WebSocket基础概念1.1 什么是WebSocket1.2 WebSocket与HTTP

C#中Guid类使用小结

《C#中Guid类使用小结》本文主要介绍了C#中Guid类用于生成和操作128位的唯一标识符,用于数据库主键及分布式系统,支持通过NewGuid、Parse等方法生成,感兴趣的可以了解一下... 目录前言一、什么是 Guid二、生成 Guid1. 使用 Guid.NewGuid() 方法2. 从字符串创建

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

Spring WebFlux 与 WebClient 使用指南及最佳实践

《SpringWebFlux与WebClient使用指南及最佳实践》WebClient是SpringWebFlux模块提供的非阻塞、响应式HTTP客户端,基于ProjectReactor实现,... 目录Spring WebFlux 与 WebClient 使用指南1. WebClient 概述2. 核心依

MyBatis-Plus 中 nested() 与 and() 方法详解(最佳实践场景)

《MyBatis-Plus中nested()与and()方法详解(最佳实践场景)》在MyBatis-Plus的条件构造器中,nested()和and()都是用于构建复杂查询条件的关键方法,但... 目录MyBATis-Plus 中nested()与and()方法详解一、核心区别对比二、方法详解1.and()

Spring Boot @RestControllerAdvice全局异常处理最佳实践

《SpringBoot@RestControllerAdvice全局异常处理最佳实践》本文详解SpringBoot中通过@RestControllerAdvice实现全局异常处理,强调代码复用、统... 目录前言一、为什么要使用全局异常处理?二、核心注解解析1. @RestControllerAdvice2

Spring IoC 容器的使用详解(最新整理)

《SpringIoC容器的使用详解(最新整理)》文章介绍了Spring框架中的应用分层思想与IoC容器原理,通过分层解耦业务逻辑、数据访问等模块,IoC容器利用@Component注解管理Bean... 目录1. 应用分层2. IoC 的介绍3. IoC 容器的使用3.1. bean 的存储3.2. 方法注

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客