二手房网站信息数据分析、数据可视化-基于python的crawl,jupyter notebook进行数据清洗和可视化。

本文主要是介绍二手房网站信息数据分析、数据可视化-基于python的crawl,jupyter notebook进行数据清洗和可视化。,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

爬取数据

使用的是beautifulsoup和request库,最终将数据存入excel即csv格式
首先导入库:

import requests
from bs4 import BeautifulSoup
import csv

创建一个方法-根据网页链接和headers获取网页的内容:

def crawl_data(crawl_url):headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.212 Safari/537.36 Edg/90.0.818.62'}url = 'https://sh.lianjia.com' + crawl_urltry:response = requests.get(url, headers=headers)start(response)except Exception as e:print(e)

抓取二手房的相关信息 包括描述、位置、房子信息、补充信息、价格、单位价格、标签
注意:用soup爬取所有最外层li的时候,class是clear LOGVIEWDATA LOGCLICKDATA;原因见此链接:原因

def start(response):item = {}soup = BeautifulSoup(response.text,'html.parser')contentlist=soup.find_all('li',{'class':'clear LOGVIEWDATA LOGCLICKDATA'})print(contentlist)for con in contentlist:describe=con.find('div',{'class':'title'}).textposition=con.find('div',{'class','positionInfo'}).texthouseinfo=con.find('div',{'class':'houseInfo'}).textfollowinfo=con.find('div',{'class':'followInfo'}).textcost=con.find('div',{'class':'totalPrice'}).find('span').textunitcost=con.find('div',{'class':'unitPrice'}).find('span').texttag=con.select('div.tag > span')totaltag = ''for t in tag:totaltag+=str(t.text) +','link=con.find('div',{'class':'title'}).find('a').get('href')seller,sellerscore,sellerreply=getseller(link)item = {"describe":describe,"position":position,"houseinfo":houseinfo,"followinfo":followinfo,"cost":cost,"unitcost":unitcost,"totaltag":totaltag,"seller":seller,"sellerscore":sellerscore,"sellerreply":sellerreply}print(item)item_list.append(item)

由于销售员在另一个页面,因此要先爬取销售员所在界面的url,再爬取此url的信息。在此getseller中传入的link参数就是上面代码块中:“link=con.find(‘div’,{‘class’:‘title’}).find(‘a’).get(‘href’)”爬到的url

def getseller(link):headers={'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.212 Safari/537.36 Edg/90.0.818.62'}resp=requests.get(link,headers=headers)soupl = BeautifulSoup(resp.text, 'html.parser')seller = soupl.find('div', {'class': 'brokerName'}).find('a').textsellerinfo=soupl.select('div.evaluate > span')sellerscore=(sellerinfo[0].text)[3:]sellerreply=((sellerinfo[-1].text)[1:])[:-3]return seller,sellerscore,sellerreply

def一个函数写入csv的表头:

def csv_title():return['标题','位置','房屋信息','关注人数及发布时间','总价','每平米价格','所有标签','销售者','销售者评分','关于销售者的评论']

main函数。这里爬取了20页,所以range(20),放在循环里依次加一。
最后是将所有爬取信息写入csv(遍历item_list)。

if __name__=='__main__':start_url = '/ershoufang/'item_list = []for a in range(20):next='/ershoufang/pg'next_url = next+str(a+1)+'/'print(next_url)crawl_data(next_url)file_name='链家信息爬取.csv'with open(file_name,'w',newline='',encoding='utf-8-sig') as f:pen=csv.writer(f)pen.writerow(csv_title())for i in item_list:pen.writerow(i.values())print("爬取完成,共爬取%d条数据"% len(item_list))

最终爬取出信息存入excel中,这个样子:
在这里插入图片描述

然后爬虫部分就结束了。

数据清洗

下边是利用jupyter notebook进行数据清洗,把一些不需要的信息用代码去除。
把一些关键的代码放在这里,完整的jupyter代码文件我会上传。
用了pandas和numpy库。

这里是取前500条数据:

df.drop(df.index[500:],inplace=True)

将位置细分,分为地址区域和详细地址两部分。

df['详细地址']=df['位置'].str.split('-',expand=True)[0]
df['地址区域']=df['位置'].str.split('-',expand=True)[1]

多了最后两列:
在这里插入图片描述

基本就是分片、将信息细分。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

数据可视化

接下来是数据的可视化。引用了这些库、字体。

import pandas as pd
import numpy as np
import collectionsimport matplotlib.pyplot as plt
import seaborn as sns
import wordcloud
import jiebaplt.rcParams['font.sans-serif']=['FangSong']
plt.rcParams['axes.unicode_minus']=False

用matplot库完成普普通通总价饼状图:

total_prices = list(df["总价"])total_prices_count = collections.Counter(total_prices)total_prices_count = total_prices_count.most_common(10)
total_prices_dic = {k: v for k, v in total_prices_count}total_prices = sorted(total_prices_dic)
counts = [total_prices_dic[k] for k in total_prices]plt.pie(total_prices,labels=total_prices,autopct='%1.2f%%')plt.title("链家房源总价Top10", fontsize=20)plt.savefig('test1.PNG')plt.show()

在这里插入图片描述

将文本中词语出现的频率作为一个参数绘制词云图:
jieba–分词
wordcloud–词云

word_counts=list(df["标题"])
word = len(list(jieba.cut(str(word_counts), cut_all=False)))
from matplotlib.pyplot import imread
bg_pic = imread('爱心.jpg')
plt.imshow(bg_pic) 
wordlist=''
for item in word_counts:wordlist+=item[0]+' '
wc = wordcloud.WordCloud(width=2000, height=800, font_path='simhei.ttf',                         background_color="white",                         max_words=1000,                                 max_font_size=50,       mask=bg_pic,   )wc.generate(wordlist)               
wc.to_file('big.jpg')
plt.imshow(wc)                                           
plt.axis('off')                                        plt.savefig('test3.PNG')
plt.show()     

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

!!!注意:以上代码是在2021年5月完成的,现在不确定是否还能无差错爬取,如果链家网站之后有了变化,可以根据新的class名称进行爬取。
爬虫、数据清洗、数据可视化的思路分享给大家。

这篇关于二手房网站信息数据分析、数据可视化-基于python的crawl,jupyter notebook进行数据清洗和可视化。的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/185491

相关文章

python安装whl包并解决依赖关系的实现

《python安装whl包并解决依赖关系的实现》本文主要介绍了python安装whl包并解决依赖关系的实现,文中通过图文示例介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录一、什么是whl文件?二、我们为什么需要使用whl文件来安装python库?三、我们应该去哪儿下

Python脚本实现图片文件批量命名

《Python脚本实现图片文件批量命名》这篇文章主要为大家详细介绍了一个用python第三方库pillow写的批量处理图片命名的脚本,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言源码批量处理图片尺寸脚本源码GUI界面源码打包成.exe可执行文件前言本文介绍一个用python第三方库pi

Python中多线程和多进程的基本用法详解

《Python中多线程和多进程的基本用法详解》这篇文章介绍了Python中多线程和多进程的相关知识,包括并发编程的优势,多线程和多进程的概念、适用场景、示例代码,线程池和进程池的使用,以及如何选择合适... 目录引言一、并发编程的主要优势二、python的多线程(Threading)1. 什么是多线程?2.

Linux使用cut进行文本提取的操作方法

《Linux使用cut进行文本提取的操作方法》Linux中的cut命令是一个命令行实用程序,用于从文件或标准输入中提取文本行的部分,本文给大家介绍了Linux使用cut进行文本提取的操作方法,文中有详... 目录简介基础语法常用选项范围选择示例用法-f:字段选择-d:分隔符-c:字符选择-b:字节选择--c

Python爬虫selenium验证之中文识别点选+图片验证码案例(最新推荐)

《Python爬虫selenium验证之中文识别点选+图片验证码案例(最新推荐)》本文介绍了如何使用Python和Selenium结合ddddocr库实现图片验证码的识别和点击功能,感兴趣的朋友一起看... 目录1.获取图片2.目标识别3.背景坐标识别3.1 ddddocr3.2 打码平台4.坐标点击5.图

Python自动化Office文档处理全攻略

《Python自动化Office文档处理全攻略》在日常办公中,处理Word、Excel和PDF等Office文档是再常见不过的任务,手动操作这些文档不仅耗时耗力,还容易出错,幸运的是,Python提供... 目录一、自动化处理Word文档1. 安装python-docx库2. 读取Word文档内容3. 修改

Rust中的BoxT之堆上的数据与递归类型详解

《Rust中的BoxT之堆上的数据与递归类型详解》本文介绍了Rust中的BoxT类型,包括其在堆与栈之间的内存分配,性能优势,以及如何利用BoxT来实现递归类型和处理大小未知类型,通过BoxT,Rus... 目录1. Box<T> 的基础知识1.1 堆与栈的分工1.2 性能优势2.1 递归类型的问题2.2

Python重命名文件并移动到对应文件夹

《Python重命名文件并移动到对应文件夹》在日常的文件管理和处理过程中,我们可能会遇到需要将文件整理到不同文件夹中的需求,下面我们就来看看如何使用Python实现重命名文件并移动到对应文件夹吧... 目录检查并删除空文件夹1. 基本需求2. 实现代码解析3. 代码解释4. 代码执行结果5. 总结方法补充在

Python自动化办公之合并多个Excel

《Python自动化办公之合并多个Excel》在日常的办公自动化工作中,尤其是处理大量数据时,合并多个Excel表格是一个常见且繁琐的任务,下面小编就来为大家介绍一下如何使用Python轻松实现合... 目录为什么选择 python 自动化目标使用 Python 合并多个 Excel 文件安装所需库示例代码

Python使用Pandas对比两列数据取最大值的五种方法

《Python使用Pandas对比两列数据取最大值的五种方法》本文主要介绍使用Pandas对比两列数据取最大值的五种方法,包括使用max方法、apply方法结合lambda函数、函数、clip方法、w... 目录引言一、使用max方法二、使用apply方法结合lambda函数三、使用np.maximum函数