激光除草距离我们实际的农业生活还有多远,结合近期所见所感基于yolov8开发构建田间作物杂草检测识别系统

本文主要是介绍激光除草距离我们实际的农业生活还有多远,结合近期所见所感基于yolov8开发构建田间作物杂草检测识别系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近的中秋、国庆双节相信很多朋友都会回家和家人团聚,我也一样,我的家乡是比较小众偏远的乡村,童年给我的最大的记忆就是干不完的农活,而这农活中很大一部分就是蹲在田间地头去人力拔草、撒肥料等,人力终究是很慢效率也很低,跟着父母劳作在玉米田间拔草,也因此认识了很多杂草,随着后面读书、上学、工作不断地背井离乡远离我的家乡,回家的次数也越来越少,如今的村里人也不多了基本上没有什么青壮年,路边的杂草随处可见,可是我却大多忘记了这些杂草的名字,只能依稀记得几种杂草的小名(我们的家乡叫法)。

上周末刚刚回来在B站看到了一个很震撼的视频,讲的就是机械制造大国德国发布的一则全自动机械化农田除草机器工作的视频,视频中显示出来的自动智能化识别杂草并且通过发射激光照射的形式来清除作物间的杂草着实让人大开眼界,德国在自动化机械化领域一直都是领先的存在,作为传统的农业生产大国,不知道视频中展现出来的高科技生产机械手段距离我们的农业生产模式还有多远的距离,我是十分期待看到我们自己的国家能够真正落地并且广泛普及这种智能化的惠农科技技术的,而不是单纯的花架子。

上面说的只是我最近的所见所感,有感而发,业余时间里面就想着自己动手做点事情,好在很早之前这块我就做过一点相关的工作,这里正好一起整合开发了。本文的核心目的也就是想要基于YOLO系列的模型来开发构建田间作物场景下的杂草检测识别系统,激活除草本质就是:智能软件+自动化硬件,这里硬件并非是我擅长的地方,所以闲暇时间里面想动手做点实践性质的动作就只能从软件方面入手。

首先看下整体实例效果:

关于如何详细地基于YOLOv8开发构建属于自己的个性化检测系统,可以参考我前面的教程:

《基于YOLOv8开发构建目标检测模型超详细教程【以焊缝质量检测数据场景为例】》

这里就不再赘述了。

这里我们构建的数据集一共包含常见的20种杂草种类,后续如果有时间的话会继续这项工作:

白车轴草
苍耳
刺儿菜
浮萍
狗尾巴草
剪刀股
鸡眼草
卷耳
苣荬菜
马齿苋
牛筋草
蒲公英
莎草
蛇莓
通泉草
小飞蓬
鸭拓草
阴石蕨
泽漆
酢浆草

不同类别数据分布概况如下所示:

默认都是100次epoch的迭代计算,这里出于对比分析的考量,我们选取了yolov8n、yolov8s和yolov8m三款不同参数量级的模型来进行模型的开发,接下来来整体对比分析下模型的结果。

【Precision曲线】
精确率曲线(Precision-Recall Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率曲线。
根据精确率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察精确率曲线,我们可以根据需求确定最佳的阈值,以平衡精确率和召回率。较高的精确率意味着较少的误报,而较高的召回率则表示较少的漏报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
精确率曲线通常与召回率曲线(Recall Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。
召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。
绘制召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的召回率和对应的精确率。
将每个阈值下的召回率和精确率绘制在同一个图表上,形成召回率曲线。
根据召回率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察召回率曲线,我们可以根据需求确定最佳的阈值,以平衡召回率和精确率。较高的召回率表示较少的漏报,而较高的精确率意味着较少的误报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
召回率曲线通常与精确率曲线(Precision Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。
F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。
绘制F1值曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率、召回率和F1分数。
将每个阈值下的精确率、召回率和F1分数绘制在同一个图表上,形成F1值曲线。
根据F1值曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
F1值曲线通常与接收者操作特征曲线(ROC曲线)一起使用,以帮助评估和比较不同模型的性能。它们提供了更全面的分类器性能分析,可以根据具体应用场景来选择合适的模型和阈值设置。

【损失值loss对比曲线】

整体结果分析来看,三款模型性能依次递增,虽然有差距,但是并不是非常大的差距,在实际使用时可能更加倾向于使用s系列的模型,能够比较好地兼顾到速度和精度的平衡。

最后以s系列的模型为例,看下结果详情:
【混淆矩阵】

【训练过程可视化】

【推理评估实例】

科技助力来改变生活方式本身就是大众期待的事情,看到已经有很先进的技术落地应用的时候不免想到我们自己,也是希望早日更多的技术能够真正意义上落地助力农业发展,这样农村振兴发展就不再会被视为是一句口号!

这篇关于激光除草距离我们实际的农业生活还有多远,结合近期所见所感基于yolov8开发构建田间作物杂草检测识别系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/180468

相关文章

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

一文详解如何从零构建Spring Boot Starter并实现整合

《一文详解如何从零构建SpringBootStarter并实现整合》SpringBoot是一个开源的Java基础框架,用于创建独立、生产级的基于Spring框架的应用程序,:本文主要介绍如何从... 目录一、Spring Boot Starter的核心价值二、Starter项目创建全流程2.1 项目初始化(

使用Java实现通用树形结构构建工具类

《使用Java实现通用树形结构构建工具类》这篇文章主要为大家详细介绍了如何使用Java实现通用树形结构构建工具类,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录完整代码一、设计思想与核心功能二、核心实现原理1. 数据结构准备阶段2. 循环依赖检测算法3. 树形结构构建4. 搜索子

利用Python开发Markdown表格结构转换为Excel工具

《利用Python开发Markdown表格结构转换为Excel工具》在数据管理和文档编写过程中,我们经常使用Markdown来记录表格数据,但它没有Excel使用方便,所以本文将使用Python编写一... 目录1.完整代码2. 项目概述3. 代码解析3.1 依赖库3.2 GUI 设计3.3 解析 Mark

利用Go语言开发文件操作工具轻松处理所有文件

《利用Go语言开发文件操作工具轻松处理所有文件》在后端开发中,文件操作是一个非常常见但又容易出错的场景,本文小编要向大家介绍一个强大的Go语言文件操作工具库,它能帮你轻松处理各种文件操作场景... 目录为什么需要这个工具?核心功能详解1. 文件/目录存javascript在性检查2. 批量创建目录3. 文件

使用Python和python-pptx构建Markdown到PowerPoint转换器

《使用Python和python-pptx构建Markdown到PowerPoint转换器》在这篇博客中,我们将深入分析一个使用Python开发的应用程序,该程序可以将Markdown文件转换为Pow... 目录引言应用概述代码结构与分析1. 类定义与初始化2. 事件处理3. Markdown 处理4. 转

基于Python开发批量提取Excel图片的小工具

《基于Python开发批量提取Excel图片的小工具》这篇文章主要为大家详细介绍了如何使用Python中的openpyxl库开发一个小工具,可以实现批量提取Excel图片,有需要的小伙伴可以参考一下... 目前有一个需求,就是批量读取当前目录下所有文件夹里的Excel文件,去获取出Excel文件中的图片,并

基于Python开发PDF转PNG的可视化工具

《基于Python开发PDF转PNG的可视化工具》在数字文档处理领域,PDF到图像格式的转换是常见需求,本文介绍如何利用Python的PyMuPDF库和Tkinter框架开发一个带图形界面的PDF转P... 目录一、引言二、功能特性三、技术架构1. 技术栈组成2. 系统架构javascript设计3.效果图

Java使用Mail构建邮件功能的完整指南

《Java使用Mail构建邮件功能的完整指南》JavaMailAPI是一个功能强大的工具,它可以帮助开发者轻松实现邮件的发送与接收功能,本文将介绍如何使用JavaMail发送和接收邮件,希望对大家有所... 目录1、简述2、主要特点3、发送样例3.1 发送纯文本邮件3.2 发送 html 邮件3.3 发送带