除草专题

探索智慧农业精准除草,基于高精度YOLOv5全系列参数【n/s/m/l/x】模型开发构建农田作物场景下杂草作物分割检测识别分析系统

智慧农业是未来的一个新兴赛道,随着科技的普及与落地应用,会有更加广阔的发展空间,关于农田作物场景下的项目开发实践,在我们前面的博文中也有很堵相关的实践,单大都是偏向于目标检测方向的,感兴趣可以自行移步阅读即可: 《自建数据集,基于YOLOv7开发构建农田场景下杂草检测识别系统》  《轻量级目标检测模型实战——杂草检测》 《激光除草距离我们实际的农业生活还有多远,结合近期所见所感基于yolov

助力智能化农田作物除草,基于YOLOv7【tiny/l/x】不同系列参数模型开发构建农田作物场景下玉米苗、杂草检测识别分析系统

在我们前面的系列博文中,关于田间作物场景下的作物、杂草检测已经有过相关的开发实践了,结合智能化的设备可以实现只能除草等操作,玉米作物场景下的杂草检测我们则少有涉及,这里本文的主要目的就是想要基于YOLOv7系列的模型来开发构建玉米田间作物场景下的玉米苗和杂草检测识别系统。 春节前后我们已经基于YOLO系列最新的YOLOv8模型开发构建了相应的项目,感兴趣可以自行移步阅读: 《助力智能化农田作物

助力智能化农田作物除草,基于轻量级YOLOv8n开发构建农田作物场景下玉米苗、杂草检测识别分析系统

在我们前面的系列博文中,关于田间作物场景下的作物、杂草检测已经有过相关的开发实践了,结合智能化的设备可以实现只能除草等操作,玉米作物场景下的杂草检测我们则少有涉及,这里本文的主要目的就是想要基于最新的YOLOv8下最轻量级的n系列的模型来开发构建玉米田间作物场景下的玉米苗和杂草检测识别系统。 首先看下实例效果: 简单看下实例数据集: 如果对YOLOv8开发构建自己的目标检测项目有

Blog技巧,CSDN博客除草记

一直都在瞎忙,好久没有时间来专门去摸索一些小技巧和各位blogger一起分享.最近在自己的blog上瞎转悠,发现有不少看不顺眼的东东,于是总结了一下,动手记录了下来.希望可以作为参考. 不过总体上来说,csdn blog到现在为止已经算是比较好用了.看来blogdevteam确实用心了.  1.去掉 "相 关 文 章" 原理:用javascript 定位到相 关 文 章的tag,然后修改其

激光除草距离我们实际的农业生活还有多远,结合近期所见所感基于yolov8开发构建田间作物杂草检测识别系统

最近的中秋、国庆双节相信很多朋友都会回家和家人团聚,我也一样,我的家乡是比较小众偏远的乡村,童年给我的最大的记忆就是干不完的农活,而这农活中很大一部分就是蹲在田间地头去人力拔草、撒肥料等,人力终究是很慢效率也很低,跟着父母劳作在玉米田间拔草,也因此认识了很多杂草,随着后面读书、上学、工作不断地背井离乡远离我的家乡,回家的次数也越来越少,如今的村里人也不多了基本上没有什么青壮年,路边的杂草随处可见,