dog算子处理图片边界matlab代码,圖像邊緣檢測——二階微分算子(上)Laplace算子、LOG算子、DOG算子(Matlab實現)...

本文主要是介绍dog算子处理图片边界matlab代码,圖像邊緣檢測——二階微分算子(上)Laplace算子、LOG算子、DOG算子(Matlab實現)...,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

如果圖像灰度變化劇烈,進行一階微分則會形成一個局部的極值,由數學上的知識,對圖像進行二階微分則會形成一個過零點,並且在零點兩邊產生一個波峰和波谷,我們要設定一個閾值,檢測到這個過零點,如下圖所示:

40f7bb227f6e8b9718f251146bf336dc.png

帶來了兩個好處:

1. 二階微分關心的是圖像灰度的突變而不強調灰度緩慢變化的區域,對邊緣的定位能力更強。

2. Laplace算子是各項同性的,即具有旋轉不變性(后面會證明),在一階微分里,我們是用|dx|+|dy|來近似一個點的梯度的,當圖像旋轉一個角度時,這個值就變化了,但對於Laplace算子來說不管圖像怎么旋轉,得到的響應是一樣的。

一個注意點:

我們檢測的必須是“過零點“,而不單單是零點,也就是要保證這個被選中的點一定要是局部極值點。比如下面這個例子,上面的曲線是圖像空間,虛線處的點並不是圖像的局部極值點,但求二階導的時候確實是零點。再比如圖像灰度的平坦區域,不管是一階導還是二階導都是0,它們顯然不是我們要的點:

461cdfd7b4c71274fe893b5f171efcf5.png

過零點的確定:

以p為中心的一個3*3領域,p點為過零點意味着至少有兩個相對的領域像素的符號不同。有四種要檢測的情況:左/右、上/下,和兩個對角。如果g(x,y)的值與一個閾值比較(一種通用的方法),那么不僅要求相對領域的符號不同,數值差的絕對值要超過這個閾值,這時p稱為一個過零點像素。

Laplace算子

09d3d5f4e21487dfb171b722b321878b.png

Laplace算子是梯度的散度 :

4c82a8b4b3abf78e62f52bf2704bf317.gif

577a6b758984fa19b652042752464dd7.png

圖像是離散的二維矩陣,用差分近似微分:

34e702cd1479f8398ff0ccb5b68113ca.gif

所以,

e3426187c9438145cdd566b7469e7e4b.gif

模板表示為:                                              其他常用的模板還有:

1f8ffa18974badd93235ccaa07cf2c98.png                                                                   

751c5418044f97907c179cd4c2ce54d3.gif                          

e0ed19419e94004e1d64b78ccacc628f.gif

Laplace算子的旋轉不變性證明如下:

fc82b36c829ba4b7f247473d086e40ea.png

兩個缺點:

1.沒有了邊緣的方向信息;

2.雙倍加強了噪聲的影響。

在Matlab中的測試結果:

原圖:

3b856297e3480933620311f7cec5972a.png

原圖在不同閾值下的邊緣檢測效果:

9525cdb20832f341f95f59d02d007fc8.png

加了椒鹽噪聲之后:

72e5845e3157261e0755b41ad91f73b4.png

加了高斯噪聲之后:

e8865fa3e370f08437c404fb5b07052d.png

代碼:

lenna = imread('E:\ImageTest\512\g512_006\lena.pgm');

%---------------------------------------------------------------------------

lenna_3=mat2gray(lenna); %圖像矩陣的歸一化

[m,n]=size(lenna_3);

lenna_4=lenna_3; %保留圖像的邊緣一個像素

L=0;

t=0.2; %設定閾值

%Laplace算子

for j=2:m-1

for k=2:n-1

L=abs(4*lenna_3(j,k)-lenna_3(j-1,k)-lenna_3(j+1,k)-lenna_3(j,k+1)-lenna_3(j,k-1));

if(L > t)

lenna_4(j,k)=255; %白

else

lenna_4(j,k)=0; %黑

end

end

end

figure;

imshow(lenna_4,[]);title('Laplacian 0.2')

可以明顯的看出,Laplace算子雖然解決了一階微分算子確定閾值的困難,但是卻不能克服噪聲的干擾。

於是LoG算子橫空出世。

LOG算子

1980年,Marr和Hildreth提出將Laplace算子與高斯低通濾波相結合,提出了LOG(Laplace and Guassian)算子。 步驟如下:

1.對圖像先進性高斯濾波(G

b63727d3a1772313d2c5572262198128.gif × f),再進行Laplace算子運算Δ(G

b63727d3a1772313d2c5572262198128.gif × f);

2.保留一階導數峰值的位置,從中尋找Laplace過零點;

3.對過零點的精確位置進行插值估計。

66e4a549a788c380c96d4b44838a9016.png

由上圖可以看出,高斯濾波之后邊緣信息才顯現出來。

d3fe6a9e2b6d80bd185d042a87e33e3d.gif

59bba3413938995ae91a18e98430c120.gif  微分算子與卷積算子的次序可以交換。

LOG算子如下:

b444e56f8057fa565ca3e3fee0b6bbef.png

根據sigma的不同以及3sigma原則可以建立不同的模板,sigma是一個尺度參數,在圖像處理中引入尺度以及建立多尺度空間是一個重要的突破,sigma越大,圖像越模糊濾除噪聲效果越好,sigma越小,效果相反。

常用模板如下:

05ff230a23df64aa7ab81e8667f340f0.gif

LOG的Matlab效果:

86b4940c3c5e78466783d338ebce60cc.png

lenna = imread('E:\ImageTest\512\g512_006\lena.pgm');

subplot(121)

imshow(lenna,[]);title('原圖')

%-------------------------------------------------------------

%自帶函數

lenna=double(lenna);

lenna_1 = edge(lenna,'log');

subplot(122)

imshow(lenna_1,[]);title('LoG 0.5')

由數學上的關系,我們可以簡化LOG的計算——這便是DOG算子。

DOG算子

二維高斯對sigma求導:

9a19e612d8c127086902739e79d28ed6.png

上面我們已經得到:

d759c98969f7a23e462e36c11f8ea960.png

可以看出:

cb6e1ad09d1d0552cef5b16bfae5e594.png

由導數定義:

bf7d5b7ade8f1e83f38d95748bd320e2.png

所以,

290ced91a870ddb752184d51e61e15c1.png

變形一下得到:

66ee6616b1682c41527f977026685496.png

右邊比LOG算子只是多了一個系數,在實際應用中不影響。

我們定義:

94a93018671a749f71a26b636b12bbbf.gif

當我們用DOG算子代替LOG算子與圖像卷積的時候:

ffd66ca27d78961793a1a2798783382e.png

近似的LOG算子

b63727d3a1772313d2c5572262198128.gif值的選取:

b30281b988bd0497e8e862f9863522bb.gif

當使用這個值時,可以保證LoG和DoG的過零點相同,只是幅度大小不同。

這樣,我們只要對圖像進行兩次高斯平滑再將結果相減就可以近似得到LOG作用於圖像的效果了!

DOG的matlab效果:

9c07c2b89a747e90fb3f363c7aee216e.png

这篇关于dog算子处理图片边界matlab代码,圖像邊緣檢測——二階微分算子(上)Laplace算子、LOG算子、DOG算子(Matlab實現)...的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/180390

相关文章

javaScript在表单提交时获取表单数据的示例代码

《javaScript在表单提交时获取表单数据的示例代码》本文介绍了五种在JavaScript中获取表单数据的方法:使用FormData对象、手动提取表单数据、使用querySelector获取单个字... 方法 1:使用 FormData 对象FormData 是一个方便的内置对象,用于获取表单中的键值

Vue ElementUI中Upload组件批量上传的实现代码

《VueElementUI中Upload组件批量上传的实现代码》ElementUI中Upload组件批量上传通过获取upload组件的DOM、文件、上传地址和数据,封装uploadFiles方法,使... ElementUI中Upload组件如何批量上传首先就是upload组件 <el-upl

如何使用CSS3实现波浪式图片墙

《如何使用CSS3实现波浪式图片墙》:本文主要介绍了如何使用CSS3的transform属性和动画技巧实现波浪式图片墙,通过设置图片的垂直偏移量,并使用动画使其周期性地改变位置,可以创建出动态且具有波浪效果的图片墙,同时,还强调了响应式设计的重要性,以确保图片墙在不同设备上都能良好显示,详细内容请阅读本文,希望能对你有所帮助...

Python自动化处理手机验证码

《Python自动化处理手机验证码》手机验证码是一种常见的身份验证手段,广泛应用于用户注册、登录、交易确认等场景,下面我们来看看如何使用Python自动化处理手机验证码吧... 目录一、获取手机验证码1.1 通过短信接收验证码1.2 使用第三方短信接收服务1.3 使用ADB读取手机短信1.4 通过API获取

Python脚本实现图片文件批量命名

《Python脚本实现图片文件批量命名》这篇文章主要为大家详细介绍了一个用python第三方库pillow写的批量处理图片命名的脚本,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言源码批量处理图片尺寸脚本源码GUI界面源码打包成.exe可执行文件前言本文介绍一个用python第三方库pi

Python爬虫selenium验证之中文识别点选+图片验证码案例(最新推荐)

《Python爬虫selenium验证之中文识别点选+图片验证码案例(最新推荐)》本文介绍了如何使用Python和Selenium结合ddddocr库实现图片验证码的识别和点击功能,感兴趣的朋友一起看... 目录1.获取图片2.目标识别3.背景坐标识别3.1 ddddocr3.2 打码平台4.坐标点击5.图

Python自动化Office文档处理全攻略

《Python自动化Office文档处理全攻略》在日常办公中,处理Word、Excel和PDF等Office文档是再常见不过的任务,手动操作这些文档不仅耗时耗力,还容易出错,幸运的是,Python提供... 目录一、自动化处理Word文档1. 安装python-docx库2. 读取Word文档内容3. 修改

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景