yolov5+bytetrack算法在华为NPU上进行端到端开发

2023-10-09 11:52

本文主要是介绍yolov5+bytetrack算法在华为NPU上进行端到端开发,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        自从毕业后开始进入了华为曻腾生态圈,现在越来越多的公司开始走国产化路线了,现在国内做AI芯片的厂商比如:寒武纪、地平线等,虽然我了解的不多,但是相对于瑞芯微这样的AI开发板来说,华为曻腾的生态比瑞芯微好太多了,参考文档非常多,学习资料也有很多,也容易上手开发。

华为曻腾官网:昇腾AI应用案例-昇腾社区 (hiascend.com)

        直接步入正题,现在的目标检测已经很成熟了,所以越来越多的公司会用到基于检测的跟踪算法,这样不仅起到了单一检测功能,还有跟踪目标或者计数的功能;

        现在应用较广泛的目标检测算法从最开始的yolov5一直到现在的yolov8,虽然只是简单的看了一下算法的原理,整体来说yolo的更新还是针对神经网络在GPU上的优化加速,而对比曻腾NPU,yolov5的速度还是在其他yolo算法中速度最快的一个;

        目标跟踪算法以前是sort+yolo,deepsort+yolo,bytetrack,fairmot等算法,本章主要介绍如何利用华为的ACL语言+ffmpeg推流进行整个业务的开发流程,大家可以借鉴下面的开发代码,首先你要具备基本的ACL语言知识,以及yolov5的后处理逻辑,跟踪方面直接借鉴开源作者的卡尔曼滤波进行预测更新即可:参考主函数代码如下:

//1.先测试yolov5_nms可以泡桐?
//使用dvpp+aipp编解码再使用opencv进行#include<iostream>#include"acl/acl.h"
#include "opencv2/opencv.hpp"
#include "opencv2/imgproc/types_c.h"
#include "acllite/AclLiteUtils.h"
#include "acllite/AclLiteError.h"
#include "acllite/AclLiteResource.h"
#include "acllite/AclLiteModel.h"
#include "acllite/AclLiteImageProc.h"
#include "AclLiteVideoProc.h"
#include "AclLiteVideoCapBase.h"
#include "BYTETracker.h"
#include <chrono>
extern"C" {#include <libavutil/mathematics.h>#include <libavutil/time.h>#include "libavcodec/avcodec.h"#include "libavformat/avformat.h"#include "libswscale/swscale.h"#include "libavutil/imgutils.h"#include "libavutil/opt.h"
};
using namespace std;
using namespace cv;
typedef struct box {float x;float y;float w;float h;float score;size_t classIndex;size_t index; // index of output buffer
} box;
namespace{int a  = 0;
}
int main()
{//1.定义初始化变量dvpp\model\acl\rtsp解码接口capAclLiteResource aclDev;aclrtRunMode g_runMode_;AclLiteVideoProc* cap_;AclLiteImageProc g_dvpp_;AclLiteModel g_model_;string streamName_;streamName_ = "rtsp://admin:ascend666@10.1.16.108/LiveMedia/ch1/Media1";//ffmpeg初始化AVFormatContext* g_fmtCtx;AVCodecContext* g_codecCtx;AVStream* g_avStream;AVCodec* g_codec;AVPacket* g_pkt;AVFrame* g_yuvFrame;uint8_t* g_yuvBuf;AVFrame* g_rgbFrame;uint8_t* g_brgBuf;int g_yuvSize;int g_rgbSize;struct SwsContext* g_imgCtx;
//参数初始化
//rtsp初始化g_avStream = NULL;g_codec = NULL;g_codecCtx = NULL;g_fmtCtx = NULL;g_pkt  = NULL;g_imgCtx = NULL;g_yuvSize = 0;g_rgbSize = 0;int picWidth = 416;int picHeight = 416;string rtsp_url = "rtsp://192.168.3.38:8554/stream";int channelId = 0;string g_outFile = rtsp_url + to_string(channelId);
//rtsp初始化avformat_network_init();if (avformat_alloc_output_context2(&g_fmtCtx, NULL, g_avFormat.c_str(), g_outFile.c_str()) < 0) {ACLLITE_LOG_ERROR("Cannot alloc output file context");return ACLLITE_ERROR;}av_opt_set(g_fmtCtx->priv_data, "rtsp_transport", "tcp", 0);av_opt_set(g_fmtCtx->priv_data, "tune", "zerolatency", 0);av_opt_set(g_fmtCtx->priv_data, "preset", "superfast", 0);//获取编码器的ID返回一个编码器g_codec = avcodec_find_encoder(AV_CODEC_ID_H264);if (g_codec == NULL) {ACLLITE_LOG_ERROR("Cannot find any endcoder");return ACLLITE_ERROR;}g_codecCtx = avcodec_alloc_context3(g_codec);if (g_codecCtx == NULL) {ACLLITE_LOG_ERROR("Cannot alloc context");return ACLLITE_ERROR;}//创建流g_avStream = avformat_new_stream(g_fmtCtx, g_codec);if (g_avStream == NULL) {ACLLITE_LOG_ERROR("failed create new video stream");return ACLLITE_ERROR;}//设置帧率g_avStream->time_base = AVRational{1, g_frameRate};//设置编码参数AVCodecParameters* param = g_fmtCtx->streams[g_avStream->index]->codecpar;param->codec_type = AVMEDIA_TYPE_VIDEO;param->width = picWidth;param->height = picHeight;avcodec_parameters_to_context(g_codecCtx, param);//参数绑定设置g_codecCtx->pix_fmt = AV_PIX_FMT_NV12;g_codecCtx->time_base = AVRational{1, g_frameRate};g_codecCtx->bit_rate = g_bitRate;g_codecCtx->gop_size = g_gopSize;g_codecCtx->max_b_frames = 0;if (g_codecCtx->codec_id == AV_CODEC_ID_H264) {g_codecCtx->qmin = 10;g_codecCtx->qmax = 51;g_codecCtx->qcompress = (float)0.6;}if (g_codecCtx->codec_id == AV_CODEC_ID_MPEG1VIDEO)g_codecCtx->mb_decision = 2;//初始化codeif (avcodec_open2(g_codecCtx, g_codec, NULL) < 0) {ACLLITE_LOG_ERROR("Open encoder failed");return ACLLITE_ERROR;}//g_codecCtx参数传递给codecparavcodec_parameters_from_context(g_avStream->codecpar, g_codecCtx);//指定输出数据的形式av_dump_format(g_fmtCtx, 0, g_outFile.c_str(), 1);//写文件头int ret1 = avformat_write_header(g_fmtCtx, NULL);if (ret1 != AVSTREAM_INIT_IN_WRITE_HEADER) {ACLLITE_LOG_ERROR("Write file header fail");return ACLLITE_ERROR;}g_pkt = av_packet_alloc();//传输数据初始化g_rgbFrame = av_frame_alloc();g_yuvFrame = av_frame_alloc();g_rgbFrame->width = g_codecCtx->width;g_yuvFrame->width = g_codecCtx->width;g_rgbFrame->height = g_codecCtx->height;g_yuvFrame->height = g_codecCtx->height;g_rgbFrame->format = AV_PIX_FMT_BGR24;g_yuvFrame->format = g_codecCtx->pix_fmt;g_rgbSize = av_image_get_buffer_size(AV_PIX_FMT_BGR24, g_codecCtx->width, g_codecCtx->height, 1);g_yuvSize = av_image_get_buffer_size(g_codecCtx->pix_fmt, g_codecCtx->width, g_codecCtx->height, 1);g_brgBuf = (uint8_t*)av_malloc(g_rgbSize);g_yuvBuf = (uint8_t*)av_malloc(g_yuvSize);//内存分配int ret2 = av_image_fill_arrays(g_rgbFrame->data, g_rgbFrame->linesize,g_brgBuf, AV_PIX_FMT_BGR24,g_codecCtx->width, g_codecCtx->height, 1);ret2 = av_image_fill_arrays(g_yuvFrame->data, g_yuvFrame->linesize,g_yuvBuf, g_codecCtx->pix_fmt,g_codecCtx->width, g_codecCtx->height, 1);g_imgCtx = sws_getContext(g_codecCtx->width, g_codecCtx->height, AV_PIX_FMT_BGR24,g_codecCtx->width, g_codecCtx->height, g_codecCtx->pix_fmt,SWS_BILINEAR, NULL, NULL, NULL);//2.类变量初始化AclLiteError ret = aclDev.Init();if (ret) {ACLLITE_LOG_ERROR("Init resource failed, error %d", ret);return ACLLITE_ERROR;}if (ACLLITE_OK != OpenVideoCapture()) {return ACLLITE_ERROR;}ret = g_dvpp_.Init();if (ret) {ACLLITE_LOG_ERROR("Dvpp init failed, error %d", ret);return ACLLITE_ERROR;}cap_ = nullptr;ret = g_model_.Init();if (ret) {ACLLITE_LOG_ERROR("Model init failed, error %d", ret);return ACLLITE_ERROR;}//3.创建模型img_info的输入以及数据拷贝操作g_runMode_ = g_aclDev_.GetRunMode();const float imageInfo[4] = {(float)g_modelInputWidth, (float)g_modelInputHeight,(float)g_modelInputWidth, (float)g_modelInputHeight};g_imageInfoSize_ = sizeof(imageInfo);g_imageInfoBuf_ = CopyDataToDevice((void *)imageInfo, g_imageInfoSize_,g_runMode_, MEMORY_DEVICE);if (g_imageInfoBuf_ == nullptr) {ACLLITE_LOG_ERROR("Copy image info to device failed");return ACLLITE_ERROR;}//4.获取视频源cap_ = new AclLiteVideoProc(streamName_);//5.视频流解码以及dvpp硬件-resizeint i =0;while(true){//6.获取解码图片(在device侧的YUV420图片)(存放在ImageDta结构体中)
//         struct ImageData {
//     acldvppPixelFormat format;
//     uint32_t width = 0;
//     uint32_t height = 0;
//     uint32_t alignWidth = 0;
//     uint32_t alignHeight = 0;
//     uint32_t size = 0;
//     std::shared_ptr<uint8_t> data = nullptr;
// };
i++;ImageData image;ret = cap_->Read(image);ImageData resizedImage;ret = g_dvpp_.Resize(resizedImage, image, 640, 640);//7.创建模型输入进行模型推理ret = g_model_.CreateInput(resizedImage.data.get(), resizedImage.size,g_imageInfoBuf_, g_imageInfoSize_);if (ret != ACLLITE_OK) {ACLLITE_LOG_ERROR("Create mode input dataset failed, error:%d", ret);return ACLLITE_ERROR;}std::vector<InferenceOutput> inferenceOutput;ret = g_model_.Execute(inferenceOutput);if (ret != ACLLITE_OK) {g_model_.DestroyInput();ACLLITE_LOG_ERROR("Execute model inference failed, error: %d", ret);return ACLLITE_ERROR;}g_model_.DestroyInput();//8.将YUV图像转换为opencv图像ImageData yuvImage;ret = CopyImageToLocal(yuvImage, image, g_runMode_);if (ret == ACLLITE_ERROR) {ACLLITE_LOG_ERROR("Copy image to host failed");return ACLLITE_ERROR;}cv::Mat yuvimg(yuvImage.height * 3 / 2, yuvImage.width, CV_8UC1, yuvImage.data.get());cv::Mat origImage;cv::cvtColor(yuvimg, origImage, CV_YUV2BGR_NV12);//模型后处理(根据目标跟踪需要的输入进行获取xywh)float* detectData = (float *)inferenceOutput[0].data.get();float* boxNum = (float *)inferenceOutput[1].data.get();uint32_t totalBox = boxNum[0];//获取(x,y,w,h) std::vector<Object> obj;float widthScale = (float)(origImage.cols) / 640.0;float heightScale = (float)(origImage.rows) / 640.0;vector<box> detectResults;for (uint32_t i = 0; i < totalBox; i++) {box boundBox;boundBox.score = float(detectData[totalBox * SCORE + i]);boundBox.x = detectData[totalBox * TOPLEFTX + i] * widthScale;boundBox.y = detectData[totalBox * TOPLEFTY + i] * heightScale;boundBox.w = detectData[totalBox * BOTTOMRIGHTX + i] * widthScale;boundBox.h = detectData[totalBox * BOTTOMRIGHTY + i] * heightScale;boundBox.classIndex = (uint32_t)detectData[totalBox * LABEL + i];detectResults.emplace_back(boundBox);}for (size_t i = 0; i < detectResults.size(); i++){if (res[i].classId != class_id){ continue; }obj[i].label = detectResults[i].classIndex;obj[i].rect.x = detectResults[i].x;obj[i].rect.y = detectResults[i].y;obj[i].rect.height = detectResults[i].h;obj[i].rect.width = detectResults[i].w;obj[i].prob = detectResults[i].score;}std::vector<STrack> output_stracks = tracker.update(obj);for (size_t i = 0; i < output_stracks.size(); i++){std::vector<float> tlwh = output_stracks[i].tlwh;cv::Scalar __color = tracker.get_color(output_stracks[i].track_id);cv::putText(origImage, std::to_string(output_stracks[i].track_id), cv::Point(tlwh[0], tlwh[1] - 10), cv::FONT_ITALIC, 0.75, __color, 2);cv::rectangle(origImage, cv::Rect(tlwh[0], tlwh[1], tlwh[2], tlwh[3]), __color, 2);    }//跟踪完成后写推流memcpy(g_brgBuf, origImage.data, g_rgbSize);sws_scale(g_imgCtx,g_rgbFrame->data,g_rgbFrame->linesize,0,g_codecCtx->height,g_yuvFrame->data,g_yuvFrame->linesize);g_yuvFrame->pts = i;if (avcodec_send_frame(g_codecCtx, g_yuvFrame) >= 0) {// cout<<a<<endl;while (avcodec_receive_packet(g_codecCtx, g_pkt) >= 0) {cout<<"avcodec_receive_packet"<<endl;g_pkt->stream_index = g_avStream->index;av_packet_rescale_ts(g_pkt, g_codecCtx->time_base, g_avStream->time_base);g_pkt->pos = -1;int ret = av_interleaved_write_frame(g_fmtCtx, g_pkt);if (ret < 0) {ACLLITE_LOG_ERROR("error is: %d", ret);}}}}av_packet_free(&g_pkt);avcodec_close(g_codecCtx);if (g_fmtCtx) {avio_close(g_fmtCtx->pb);avformat_free_context(g_fmtCtx);}if (cap_ != nullptr) {cout << "cap is not open" << endl;cap_->Close();delete cap_;}dvpp_.DestroyResource();return 0;
}

跟踪器方面的函数,可以搜索开源代码yolov5-bytetrack-main.cpp截取内部跟踪部分,检测部分使用华为ACL编写的推理代码进行检测;

可以加入学习讨论:1076799627

这篇关于yolov5+bytetrack算法在华为NPU上进行端到端开发的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/172675

相关文章

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Java进行文件格式校验的方案详解

《Java进行文件格式校验的方案详解》这篇文章主要为大家详细介绍了Java中进行文件格式校验的相关方案,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、背景异常现象原因排查用户的无心之过二、解决方案Magandroidic Number判断主流检测库对比Tika的使用区分zip

Java使用Curator进行ZooKeeper操作的详细教程

《Java使用Curator进行ZooKeeper操作的详细教程》ApacheCurator是一个基于ZooKeeper的Java客户端库,它极大地简化了使用ZooKeeper的开发工作,在分布式系统... 目录1、简述2、核心功能2.1 CuratorFramework2.2 Recipes3、示例实践3

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

利用Python开发Markdown表格结构转换为Excel工具

《利用Python开发Markdown表格结构转换为Excel工具》在数据管理和文档编写过程中,我们经常使用Markdown来记录表格数据,但它没有Excel使用方便,所以本文将使用Python编写一... 目录1.完整代码2. 项目概述3. 代码解析3.1 依赖库3.2 GUI 设计3.3 解析 Mark