本文主要是介绍基于matlab点云工具箱对点云进行处理四:对点云进行欧式聚类,并获得包围点云簇的外接凹多边形,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
基于matlab点云工具箱对点云进行处理四:对点云进行欧式聚类,并获得包围点云簇的外接凹多边形
步骤:
- 读取velodyne数据包pcap文件内的点云数据
- 使用pcdownsample函数对点云数据进行体素化采样,减少点云数量
- 使用find函数对点云进行筛选
- 使用pcdnoise去除点云内的噪声
- 使用pcsegdist进行欧式聚类
- 使用boundary获得外包顶点
- 对顶点进行整理,输出
相关程序代码点这里https://download.csdn.net/download/rmrgjxeivt/59558971
基于matlab点云工具箱对点云进行处理一:去除地面,保留剩下的点https://blog.csdn.net/rmrgjxeivt/article/details/121830344
基于matlab点云工具箱对点云进行处理二:对点云进行欧式聚类,获得聚类后点云簇的外接矩形https://blog.csdn.net/rmrgjxeivt/article/details/121830919
基于matlab点云工具箱对点云进行处理三:对点云进行欧式聚类,使用三角剖分处理后获取点云簇的外接凸多边形https://blog.csdn.net/rmrgjxeivt/article/details/121831507
基于matlab点云工具箱对点云进行处理四:对点云进行欧式聚类,并获得包围点云簇的外接凹多边形https://blog.csdn.net/rmrgjxeivt/article/details/121831934
% 读取激光的PCAP文件
% 筛选感兴趣区域
% 播放筛选后的点云veloReader = velodyneFileReader('2021-11-23-12-49-43_Velodyne-HDL-32-Data.pcap','VLP32c');%% 设置感兴趣区域vehPara.length = 5.5;
vehPara.width = 2.2;
vehPara.d = 2.3; % 轴距
vehPara.rearOverhang = 1; % 前悬
vehPara.rearOverhang = 1; % 后悬
vehPara.CG2Rear = 1.45; % 质心到后轴insRegion = [-20 50 -10 10 0 2]; % 感兴趣区域[minX maxX minY maxY]
groundRegion = [-1, 0.2]; % 地面区域,z轴方向xLimits = [insRegion(1), insRegion(2)];
yLimits = [insRegion(3), insRegion(4)];
zLimits = [insRegion(5), insRegion(6)]; % 原点在后轴中心,因此此处相对于轮芯高度player = pcplayer(xLimits,yLimits,zLimits);xlabel(player.Axes,'X (m)');
ylabel(player.Axes,'Y (m)');
zlabel(player.Axes,'Z (m)');veloReader.CurrentTime = veloReader.StartTime + seconds(0.3);disp(['frame数量',num2str(veloReader.NumberOfFrames)])pause(2)frameID = 1000;while(hasFrame(veloReader) && player.isOpen() && (veloReader.CurrentTime < veloReader.EndTime))
ptCloudObj = readFrame(veloReader,frameID);
frameIDtic
lidarLo = [3.5 0 1.1 0 0 0];% 取出XYZ
xTemp = ptCloudObj.Location(:,:,2)+lidarLo(
这篇关于基于matlab点云工具箱对点云进行处理四:对点云进行欧式聚类,并获得包围点云簇的外接凹多边形的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!