【立体匹配和深度估计 2】Middlebury Stereo Datasets

2023-10-09 05:59

本文主要是介绍【立体匹配和深度估计 2】Middlebury Stereo Datasets,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考《高精度立体匹配算法研究》

 

vision.middlebury.edu 由 Daniel Scharstein 和 Richard Szeliski 及其他研究人员维护。Middlebury Stereo Vision Page 主要提供立体匹配算法的在线评价和数据下载服务。它由《A taxonomy and evaluation of dense two-frame stereo correspondence algorithms》这篇文章发展而来。
这篇文章主要介绍其数据集 Middlebury Stereo Datasets。

文章目录
1. Middlebury Stereo Datasets
1.1 2001 Stereo datasets with ground truth
1.2 2003 Stereo datasets with ground truth
1.3 2005 Stereo datasets with ground truth
1.4 2006 Stereo datasets with ground truth
1.5 2014 Stereo datasets with ground truth
2. Middlebury Stereo Evaluation
1. Middlebury Stereo Datasets
1.1 2001 Stereo datasets with ground truth
2001 Stereo datasets 由 Daniel Scharstein, Padma Ugbabe, and Rick Szeliski创建。每套子集包含9张图像(im0.ppm - im8.ppm) 和对应 images 2 和 6 的实际真值视差图(disp2.pgm anddisp6.pgm)。也就是说,9张图像是沿水平线的序列,其中 im2.ppm 为左视图,im6.ppm 为右视图,disp2.pgm为左视差图,disp6.pgm为右视差图。

每个实际真值视差图中每个点的视差值被放大了8倍。举例说明,在disp2.pgm中某点的值为100,意味着im2.ppm(左图)中的该位置的像素点和与之对应的im6.ppm(右图)中的像素点的水平像素距离为12.5。

1.2 2003 Stereo datasets with ground truth
2003 Stereo datasets 由Daniel Scharstein, Alexander Vandenberg-Rodes, 和 Rick Szeliski 创建。它包含高分辨率的双目图像序列,以及精确到像素水平的实际真值视差图。实际真值视差图由结构光这种新技术采集获得,因而不需要矫正光照映射。

数据描述:

Quarter-size (450 x 375) versions of our new data sets “Cones” and “Teddy” are available for download below. Each data set contains 9 color images (im0…im8) and 2 disparity maps (disp2 and disp6). The 9 color images form a multi-baseline stereo sequence, i.e., they are taken from equally-spaced viewpoints along the x-axis from left to right. The images are rectified so that all image motion is purely horizontal. To test a two-view stereo algorithm, the two reference views im2 (left) and im6 (right) should be used. Ground-truth disparites with quarter-pixel accuracy are provided for these two views. Disparities are encoded using a scale factor 4 for gray levels 1 … 255, while gray level 0 means “unknown disparity”. Therefore, the encoded disparity range is 0.25 … 63.75 pixels.

F - full size: 1800 x 1500
H - half size: 900 x 750
Q - quarter size: 450 x 375 (same as above)

1.3 2005 Stereo datasets with ground truth
These 9 datasets of 2005 Stereo datasets were created by Anna Blasiak, Jeff Wehrwein, and Daniel Scharstein at Middlebury College in the summer of 2005, and were published in conjunction with two CVPR 2007 papers [3, 4]. Each image below links to a directory containing the full-size views and disparity maps. Shown are the left views; moving the mouse over the images shows the right views. We’re withholding the true disparity maps for three of the sequences (Computer, Drumsticks, and Dwarves) which we may use in future evaluations.

Dataset description:

Each dataset consists of 7 views (0…6) taken under three different illuminations (1…3) and with three different exposures (0…2). Here’s an overview. Disparity maps are provided for views 1 and 5. The images are rectified and radial distortion has been removed. We provide each dataset in three resolutions: full-size (width: 1330…1390, height: 1110), half-size (width: 665…695, height: 555), and third-size (width: 443…463, height: 370). The files are organized as follows:

{Full,Half,Third}Size/
  SCENE/
    disp1.png
    disp5.png
    dmin.txt
    Illum{1,2,3}/
      Exp{0,1,2}/
        exposure_ms.txt
        view{0-6}.png

The file “exposure_ms.txt” lists the exposure time in milliseconds. The disparity images relate views 1 and 5. For the full-size images, disparities are represented “as is”, i.e., intensity 60 means the disparity is 60. The exception is intensity 0, which means unknown disparity. In the half-size and third-size versions, the intensity values of the disparity maps need to be divided by 2 and 3, respectively. To map the disparities into 3D coordinates, add the value in “dmin.txt” to each disparity value, since the images and disparity maps were cropped. The focal length is 3740 pixels, and the baseline is 160mm. We do not provide any other calibration data. Occlusion maps can be generated by crosschecking the pair of disparity maps.

1.4 2006 Stereo datasets with ground truth
These 21 datasets of 2006 Stereo datasets were created by Brad Hiebert-Treuer, Sarri Al Nashashibi, and Daniel Scharstein at Middlebury College in the summer of 2006, and were published in conjunction with two CVPR 2007 papers [3, 4]. Each image below links to a directory containing the full-size views and disparity maps. Shown are the left views; moving the mouse over the images shows the right views.

Dataset description:

Each dataset consists of 7 views (0…6) taken under three different illuminations (1…3) and with three different exposures (0…2). Here’s an overview. Disparity maps are provided for views 1 and 5. The images are rectified and radial distortion has been removed. We provide each dataset in three resolutions: full-size (width: 1240…1396, height: 1110), half-size (width: 620…698, height: 555), and third-size (width: 413…465, height: 370). The files are organized as follows:

{Full,Half,Third}Size/
  SCENE/
    disp1.png
    disp5.png
    dmin.txt
    Illum{1,2,3}/
      Exp{0,1,2}/
        exposure_ms.txt
        view{0-6}.png

The file “exposure_ms.txt” lists the exposure time in milliseconds. The disparity images relate views 1 and 5. For the full-size images, disparities are represented “as is”, i.e., intensity 60 means the disparity is 60. The exception is intensity 0, which means unknown disparity. In the half-size and third-size versions, the intensity values of the disparity maps need to be divided by 2 and 3, respectively. To map the disparities into 3D coordinates, add the value in “dmin.txt” to each disparity value, since the images and disparity maps were cropped. The focal length is 3740 pixels, and the baseline is 160mm. We do not provide any other calibration data. Occlusion maps can be generated by crosschecking the pair of disparity maps.

1.5 2014 Stereo datasets with ground truth
These 33 datasets of 2014 Stereo datasets were created by Nera Nesic, Porter Westling, Xi Wang, York Kitajima, Greg Krathwohl, and Daniel Scharstein at Middlebury College during 2011-2013, and refined with Heiko Hirschmüller at the DLR Germany during 2014. A detailed description of the acquisition process can be found in our GCPR 2014 paper [5]. 20 of the datasets are used in the new Middlebury Stereo Evaluation (10 each for training and test sets). Except for the 10 test datasets, we provide links to directories containing the full-size views and disparity maps.

Dataset description

Each dataset consists of 2 views taken under several different illuminations and exposures. The files are organized as follows:

SCENE-{perfect,imperfect}/     -- each scene comes with perfect and imperfect calibration (see paper)
  ambient/                     -- directory of all input views under ambient lighting
    L{1,2,...}/                -- different lighting conditions
      im0e{0,1,2,...}.png      -- left view under different exposures
      im1e{0,1,2,...}.png      -- right view under different exposures
  calib.txt                    -- calibration information
  im{0,1}.png                  -- default left and right view
  im1E.png                     -- default right view under different exposure
  im1L.png                     -- default right view with different lighting
  disp{0,1}.pfm                -- left and right GT disparities
  disp{0,1}-n.png              -- left and right GT number of samples (* perfect only)
  disp{0,1}-sd.pfm             -- left and right GT sample standard deviations (* perfect only)
  disp{0,1}y.pfm               -- left and right GT y-disparities (* imperfect only)

Calibration file format
Here is a sample calib.txt file for one of the full-size training image pairs:

cam0=[3997.684 0 1176.728; 0 3997.684 1011.728; 0 0 1]
cam1=[3997.684 0 1307.839; 0 3997.684 1011.728; 0 0 1]
doffs=131.111
baseline=193.001
width=2964
height=1988
ndisp=280
isint=0
vmin=31
vmax=257
dyavg=0.918
dymax=1.516

The calibration files provided with the test image pairs used in the stereo evaluation only contain the first 7 lines, up to the “ndisp” parameter.

Explanation:

cam0,1:        camera matrices for the rectified views, in the form [f 0 cx; 0 f cy; 0 0 1], where
  f:           focal length in pixels
  cx, cy:      principal point  (note that cx differs between view 0 and 1)

doffs:         x-difference of principal points, doffs = cx1 - cx0

baseline:      camera baseline in mm

width, height: image size

ndisp:         a conservative bound on the number of disparity levels;
               the stereo algorithm MAY utilize this bound and search from d = 0 .. ndisp-1

isint:         whether the GT disparites only have integer precision (true for the older datasets;
               in this case submitted floating-point disparities are rounded to ints before evaluating)

vmin, vmax:    a tight bound on minimum and maximum disparities, used for color visualization;
               the stereo algorithm MAY NOT utilize this information

dyavg, dymax:  average and maximum absolute y-disparities, providing an indication of
               the calibration error present in the imperfect datasets.

To convert from the floating-point disparity value d [pixels] in the .pfm file to depth Z [mm] the following equation can be used:

Z = baseline * f / (d + doffs)

Note that the image viewer “sv” and mesh viewer “plyv” provided by our software cvkit can read the calib.txt files and provide this conversion automatically when viewing .pfm disparity maps as 3D meshes.

2. Middlebury Stereo Evaluation
————————————————
版权声明:本文为CSDN博主「RadiantJeral」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/RadiantJeral/article/details/85172432

 

【立体匹配和深度估计 3】Computer Vision Toolkit (cvkit)

https://blog.csdn.net/RadiantJeral/article/details/86008558

这篇关于【立体匹配和深度估计 2】Middlebury Stereo Datasets的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/170824

相关文章

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

深度剖析SpringBoot日志性能提升的原因与解决

《深度剖析SpringBoot日志性能提升的原因与解决》日志记录本该是辅助工具,却为何成了性能瓶颈,SpringBoot如何用代码彻底破解日志导致的高延迟问题,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言第一章:日志性能陷阱的底层原理1.1 日志级别的“双刃剑”效应1.2 同步日志的“吞吐量杀手”

深度解析Python yfinance的核心功能和高级用法

《深度解析Pythonyfinance的核心功能和高级用法》yfinance是一个功能强大且易于使用的Python库,用于从YahooFinance获取金融数据,本教程将深入探讨yfinance的核... 目录yfinance 深度解析教程 (python)1. 简介与安装1.1 什么是 yfinance?

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1