拓展模块使用教程和心得(三):ULN2003模块与28BYJ48步进电机(测试平台:STC8A8K,STM32F103)

本文主要是介绍拓展模块使用教程和心得(三):ULN2003模块与28BYJ48步进电机(测试平台:STC8A8K,STM32F103),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

成就更好的自己

关于ULN2003模块和对应的28BYJ48步进电机,网上现有的资料与教程对于初学者有点不太友好,造成的现象是仅仅只能让步进电机转起来,但是没有对于控制转速和转角的实践分析,本文的所有内容博主都经过了实物及程序的验证和计算,并以最言简意赅的方式记录下来。(测试平台:STC8A8K,STM32F103)

目录

ULN2003模块电路

28BYJ48步进电机

细枝末节的知识

 

ULN2003模块电路

先上实物图:

左边7PIN的排针是连到单片机IO口上的,中间偏下插着短接帽的4PIN排针是供电给模块和步进电机(有时候是单独供电,但是要共地),偏右边白色的5PIN插槽是五线四相步进电机专用接口,最右边的的7PIN排针是控制其他多项电机(低于七项)用的。

ULN2003本质很简单

除了8.9俩电源引脚之外,其他引脚(7*2)都是相互对应的(以上图为例,1~16,2~15以此类推),具体是什么原理呢,咱不用知道那么多,咱只用知道ULN2003内部用的是高耐压、大电流复合晶体管阵列,是让单片机IO口驱动大电流用的(因为咱们用的步进电机内部其实还是线圈,所以用到了ULN2003),多用于单片机、智能仪表、PLC、数字量输出卡等控制电路中,可直接驱动继电器等负载。由于单片机采用的是灌电流驱动方式(这种驱动方式驱动能力强,但是容易烧),因此控制步进电机的IO口0为有效电平,1为无效电平

步进电机,ULN2003,单片机的前后连接原理图如下:

 

 

28BYJ48步进电机

所有资料都写的是步进电机靠脉冲驱动的,一个脉冲对应转过一个步距角,这句话会有部分理解上的问题的,下面我会一一分析的。

现在给大家区分一个概念,上图中能直接看到的绑个弹簧的那个轴是输出轴,在这个步进电机内部有个真正的步进马达转子每一个脉冲(或者下文所谓的“拍”)能使这个真正的转子转动5.625°,看下图的数据表格中的减速比是1:64,意思是这个真正的步进马达转子转动64周才能让输出轴转动1周(这个术语叫做步进马达的细分),因此下图的表格中步距角度才写的是5.625°/64,表明的意思是一个脉冲可以让输出轴转动5.625°/64的角度

脉冲的意思,必须由低电平变高电平,说白了这玩意看上升沿的,持续一段时间然后拉低即可,这段持续的时间直接决定了电机的转速,据说这废物最快14转每分钟。

下面详细说一下通电方式(或者叫励磁方式)

首先,脉冲(或拍)的数量决定转动的角度,单位时间内脉冲(或拍)的数量决定转动的速度

常见的通电方式有:

  • 一相励磁:单(单相绕组通电)四拍(A-B-C-D-A。。。)
  • 二相励磁:双(双相绕组通电)四拍(AB-BC-CD-DA-AB-。。。)
  • 一二相励磁:八拍(A-AB-B-BC-C-CD-D-DA-A。。。)

其中,经过博主的对比试验和资料查找,一相励磁和二相励磁一个脉冲转动两个步距角,一二相励磁一次脉冲只转一个步距角(测试平台STC8A8K,STM32F103)

举个简单例子,这里博主为了朋友们便于理解,没有采用网上的相序表(数组法因接口而异):

单(单相绕组通电)四拍(A-B-C-D-A。。。)

void main()		//一相励磁的例程					
{uint16 num;IN1=IN2=IN3=IN4=1;for(num=640;num>0;num--)  //640个循环,5.625/64步距角*2(一相励磁一拍走2个步距角)*4拍*640次循环=450度{IN1=~IN1;	//控制A相的IO口非运算后的电平变化产生一个脉冲,第一拍delay(speed);IN1=~IN1;IN2=~IN2;	//控制B相的IO口非运算后的电平变化产生一个脉冲,第二拍delay(speed);IN2=~IN2;IN3=~IN3;	//控制C相的IO口非运算后的电平变化产生一个脉冲,第三拍delay(speed);IN3=~IN3;IN4=~IN4;	//控制D相的IO口非运算后的电平变化产生一个脉冲,第四拍delay(speed);IN4=~IN4;}IN1=IN2=IN3=IN4=1;while(1);
}

双(双相绕组通电)四拍(AB-BC-CD-DA-AB-。。。)

void main()		//二相励磁的例程
{uint16 num;IN1=IN2=IN3=IN4=1;for(num=640;num>0;num--)  //640个循环,5.625/64步距角*2(二相励磁一拍走2个步距角)*4拍*640次循环=450度{IN1=~IN1;	//控制A相的IO口非运算后的电平变化产生一个脉冲,第一拍IN2=~IN2;	//控制B相的IO口非运算后的电平变化产生一个脉冲,第一拍delay(speed);IN1=~IN1;	IN2=~IN2;	IN2=~IN2;	//控制B相的IO口非运算后的电平变化产生一个脉冲,第二拍IN3=~IN3;   //控制C相的IO口非运算后的电平变化产生一个脉冲,第二拍delay(speed);IN2=~IN2;IN3=~IN3;	IN3=~IN3;	//控制C相的IO口非运算后的电平变化产生一个脉冲,第三拍IN4=~IN4;	//控制D相的IO口非运算后的电平变化产生一个脉冲,第三拍delay(speed);IN3=~IN3;IN4=~IN4;	IN4=~IN4;	//控制D相的IO口非运算后的电平变化产生一个脉冲,第四拍IN1=~IN1;	//控制A相的IO口非运算后的电平变化产生一个脉冲,第四拍delay(speed);IN4=~IN4;IN1=~IN1;}IN1=IN2=IN3=IN4=1;while(1);
}

八拍(A-AB-B-BC-C-CD-D-DA-A。。。)

void main()			//一二相励磁的例程
{uint16 num;IN1=IN2=IN3=IN4=1;for(num=640;num>0;num--)  //640个循环,5.625/64步距角*1(一二相励磁一拍走1个步距角)*8拍*640次循环=450度{IN1=~IN1;	//控制A相的IO口非运算后的电平变化产生一个脉冲,第一拍delay(speed);IN1=~IN1;IN1=~IN1;	//控制A相的IO口非运算后的电平变化产生一个脉冲,第二拍IN2=~IN2;	//控制B相的IO口非运算后的电平变化产生一个脉冲,第二拍delay(speed);IN1=~IN1;IN2=~IN2;IN2=~IN2;	//控制B相的IO口非运算后的电平变化产生一个脉冲,第三拍delay(speed);IN2=~IN2;IN2=~IN2;	//控制B相的IO口非运算后的电平变化产生一个脉冲,第四拍IN3=~IN3;	//控制C相的IO口非运算后的电平变化产生一个脉冲,第四拍delay(speed);IN2=~IN2;IN3=~IN3;IN3=~IN3;	//控制C相的IO口非运算后的电平变化产生一个脉冲,第五拍delay(speed);IN3=~IN3;IN3=~IN3;	//控制C相的IO口非运算后的电平变化产生一个脉冲,第六拍IN4=~IN4;	//控制D相的IO口非运算后的电平变化产生一个脉冲,第六拍delay(speed);IN3=~IN3;IN4=~IN4;IN4=~IN4;	//控制D相的IO口非运算后的电平变化产生一个脉冲,第七拍delay(speed);IN4=~IN4;IN4=~IN4;   //控制D相的IO口非运算后的电平变化产生一个脉冲,第八拍IN1=~IN1;   //控制A相的IO口非运算后的电平变化产生一个脉冲,第八拍delay(speed);IN4=~IN4;IN1=~IN1;}IN4=IN1=IN2=IN3=1;while(1);
}

关于控制线的脉冲有严格顺序,通脉冲的顺序影响转向(顺向逆向),负载能力,电机发热程度等。

这里博主给出了使用手册上的标准脉冲流程,如果想反转的话只用颠倒给脉冲的顺序即可,但是不要打乱顺序,否则也可能会转但是会造成各种问题。

 

细枝末节的知识

  • 这个步进电机最快转速据说14转每分钟(博主实测10转,可能延时有点慢),不能贪图速度,延时一定要延够,否则只会震动不会转动,至于慢的话,没有那个耐心测出他最慢有多慢。。。
  • 至于转角的话,只用算出他需要转几个脉冲然后循环就行了。
  • 在停止转动后,记得将所有控制线拉高,不然电机时间长了会很热,一般内部热度超过130度就会对内部的永磁体造成不可逆转的退磁现象,电机的步距角就会不准确。
  • 觉得驱动力矩不够的可以加到12v,记得与ULN2003共地。
  • 博主在初期调试的时候,一相和二相励磁时,实际转角一直是理论计算的两倍,后期查资料才知道,这两种励磁方式一脉冲转的是两个步距角,这个问题网上提到的人很少,也发现有朋友遇到过类似问题,但是我毕竟不是机械专业的,只能根据网友的结论和自己实际的情况下定论,如果发现有误或者知道原理的朋友欢迎评论或私信,共同进步,谢谢。
  • 还有一种励磁方式是以PWM脉冲调制取代单一高低电平作为上文中的3种励磁方式的输入,这种新的励磁方式有很大优点,但是因为实现起来相当复杂,一般是用不到的,有兴趣的朋友们可以自行百度一下。

这篇关于拓展模块使用教程和心得(三):ULN2003模块与28BYJ48步进电机(测试平台:STC8A8K,STM32F103)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/167992

相关文章

使用Python和Pyecharts创建交互式地图

《使用Python和Pyecharts创建交互式地图》在数据可视化领域,创建交互式地图是一种强大的方式,可以使受众能够以引人入胜且信息丰富的方式探索地理数据,下面我们看看如何使用Python和Pyec... 目录简介Pyecharts 简介创建上海地图代码说明运行结果总结简介在数据可视化领域,创建交互式地

Java Stream流使用案例深入详解

《JavaStream流使用案例深入详解》:本文主要介绍JavaStream流使用案例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录前言1. Lambda1.1 语法1.2 没参数只有一条语句或者多条语句1.3 一个参数只有一条语句或者多

Java Spring 中 @PostConstruct 注解使用原理及常见场景

《JavaSpring中@PostConstruct注解使用原理及常见场景》在JavaSpring中,@PostConstruct注解是一个非常实用的功能,它允许开发者在Spring容器完全初... 目录一、@PostConstruct 注解概述二、@PostConstruct 注解的基本使用2.1 基本代

C#使用StackExchange.Redis实现分布式锁的两种方式介绍

《C#使用StackExchange.Redis实现分布式锁的两种方式介绍》分布式锁在集群的架构中发挥着重要的作用,:本文主要介绍C#使用StackExchange.Redis实现分布式锁的... 目录自定义分布式锁获取锁释放锁自动续期StackExchange.Redis分布式锁获取锁释放锁自动续期分布式

springboot使用Scheduling实现动态增删启停定时任务教程

《springboot使用Scheduling实现动态增删启停定时任务教程》:本文主要介绍springboot使用Scheduling实现动态增删启停定时任务教程,具有很好的参考价值,希望对大家有... 目录1、配置定时任务需要的线程池2、创建ScheduledFuture的包装类3、注册定时任务,增加、删

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1

Pandas透视表(Pivot Table)的具体使用

《Pandas透视表(PivotTable)的具体使用》透视表用于在数据分析和处理过程中进行数据重塑和汇总,本文就来介绍一下Pandas透视表(PivotTable)的具体使用,感兴趣的可以了解一下... 目录前言什么是透视表?使用步骤1. 引入必要的库2. 读取数据3. 创建透视表4. 查看透视表总结前言

Python 交互式可视化的利器Bokeh的使用

《Python交互式可视化的利器Bokeh的使用》Bokeh是一个专注于Web端交互式数据可视化的Python库,本文主要介绍了Python交互式可视化的利器Bokeh的使用,具有一定的参考价值,感... 目录1. Bokeh 简介1.1 为什么选择 Bokeh1.2 安装与环境配置2. Bokeh 基础2

Android使用ImageView.ScaleType实现图片的缩放与裁剪功能

《Android使用ImageView.ScaleType实现图片的缩放与裁剪功能》ImageView是最常用的控件之一,它用于展示各种类型的图片,为了能够根据需求调整图片的显示效果,Android提... 目录什么是 ImageView.ScaleType?FIT_XYFIT_STARTFIT_CENTE

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen