Elasticsearch实战(十八)--ES搜索Doc Values/Fielddata 正排索引 深入解析

本文主要是介绍Elasticsearch实战(十八)--ES搜索Doc Values/Fielddata 正排索引 深入解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.正排索引与倒排索引


先说结论,再讲原理
!!!尽量不要再生产环境使用fielddata=true,即使要用也要控制好占用内存比例的大小,否则容易出现OOM
!!!尽量不要再生产环境使用fielddata=true,即使要用也要控制好占用内存比例的大小,否则容易出现OOM
!!!尽量不要再生产环境使用fielddata=true,即使要用也要控制好占用内存比例的大小,否则容易出现OOM

讲讲 原理,现在又3个文档如下

 doc1:i am jzj
 doc2:you are right
 doc3:i am lucy

正排索引->就是人们正常的思维, 一个文档包含哪些单词
doc1: i, am, jzj 3个单词
doc2: you, are, right 3个单词
doc3: i,am,lucy 3个单词

倒排索引-> 反向思维,将分词,映射到每一个doc,每个单词在哪些文档中出现
i单词:doc1,doc3
am单词:doc1,doc3
jzj单词:doc1
you单词:doc2
are单词:doc2
right单词:doc2
lucy单词:doc3

正排优势
查询文档中包括哪些term单词,天然的支持比如搜索doc1有哪些term,直接取1条数据就可以得出结果,再比如聚合排序操作 doc4中有个 age:18, order by age,直接就可以取到值,进行排序,劣势是搜索慢,比如我要找 am单词出现在哪些文档,就要便利每一个doc1,doc2,doc3,去查该文档是否包含am单词
倒排优势
查询am单词出现在哪些文档中?对于倒排索引天然的支持,因为他就是按这样子存储的,am单词:doc1,doc2,直接可以定位到doc1,doc3 两个文档,劣势是对于聚合操作及排序操作不友好
所以ES中即存在倒排索引,有存在正排索引

搜索需要用到倒排索引
排序和聚合则需要使用 “正排索引”。
Doc Values和Fielddata就是用来给文档建立正排索引的, DocValues工作地盘主要在磁盘,是建立索引的时候进行的初始化,而Fielddata的工作地盘在内存,需要开启 fielddata=true ,fielddata 构建和管理 100% 在内存中,常驻于 JVM 内存堆,使用text字段进行聚合排序的时候才加载到内存。


2.准备数据


先构造 index:testquery, 然后构造mapping结构, 插入测试数据

#构建 库index testquer
put /testquery

#构建mapping结构
put /testquery/_mapping
{
    "properties" : {
      "address" : {
          "type" : "text",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "ignore_above" : 256
            }
          },
          "copy_to" : [
            "info"
          ]
        },
      "age" : {
          "type" : "long"
        },
      "area" : {
          "type" : "text",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "ignore_above" : 256
            }
          }
        },
      "city" : {
          "type" : "text",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "ignore_above" : 256
            }
          }
        },
      "content" : {
          "type" : "text",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "ignore_above" : 256
            }
          }
        },
      "deptName" : {
          "type" : "text",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "ignore_above" : 256
            }
          },
          "fielddata" : true
        },
      "empId" : {
          "type" : "text",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "ignore_above" : 256
            }
          }
        },
      "info" : {
          "type" : "text",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "ignore_above" : 256
            }
          }
        },
      "mobile" : {
          "type" : "text",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "ignore_above" : 256
            }
          },
          "copy_to" : [
            "info"
          ]
        },
      "name" : {
          "type" : "text",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "ignore_above" : 256
            }
          },
          "copy_to" : [
            "info"
          ]
        },
      "provice" : {
          "type" : "text",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "ignore_above" : 256
            }
          },
          "fielddata" : true
        },
      "salary" : {
          "type" : "long"
        },
      "sex" : {
          "type" : "text",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "ignore_above" : 256
            }
          }
        },
          "addtime" : {
          "type":"date",
          //时间格式 epoch_millis表示毫秒
          "format":"yyyy-MM-dd HH:mm:ss||yyyy-MM-dd||epoch_millis"
        }
    }
}

插入测试数据

put /testquery/_bulk
{"index":{"_id": 1},"addtime":"1658041203000"}
{"empId" : "111","name" : "员工1","age" : 20,"sex" : "男","mobile" : "19000001111","salary":1333,"deptName" : "技术部","provice" : "湖北省","city":"武汉","area":"光谷大道","address":"湖北省武汉市洪山区光谷大厦","content" : "i like to write best elasticsearch article", "addtime":"1658140003000"}
{"index":{"_id": 2}}
{"empId" : "222","name" : "员工2","age" : 25,"sex" : "男","mobile" : "19000002222","salary":15963,"deptName" : "销售部","provice" : "湖北省","city":"武汉","area":"江汉区","address" : "湖北省武汉市江汉路","content" : "i think java is the best programming language"}
{"index":{"_id": 3},"addtime":"1658040045600"}
{ "empId" : "333","name" : "员工3","age" : 30,"sex" : "男","mobile" : "19000003333","salary":20000,"deptName" : "技术部","provice" : "湖北省","city":"武汉","area":"经济技术开发区","address" : "湖北省武汉市经济开发区","content" : "i am only an elasticsearch beginner"}
{"index":{"_id": 4},"addtime":"1658040012000"}
{"empId" : "444","name" : "员工4","age" : 20,"sex" : "女","mobile" : "19000004444","salary":5600,"deptName" : "销售部","provice" : "湖北省","city":"武汉","area":"沌口开发区","address" : "湖北省武汉市沌口开发区","content" : "elasticsearch and hadoop are all very good solution, i am a beginner"}
{"index":{"_id": 5},"addtime":"1658040593000"}
{ "empId" : "555","name" : "员工5","age" : 20,"sex" : "男","mobile" : "19000005555","salary":9665,"deptName" : "测试部","provice" : "湖北省","city":"高新开发区","area":"武汉","address" : "湖北省武汉市东湖隧道","content" : "spark is best big data solution based on scala ,an programming language similar to java"}
{"index":{"_id": 6},"addtime":"1658043403000"}
{"empId" : "666","name" : "员工6","age" : 30,"sex" : "女","mobile" : "19000006666","salary":30000,"deptName" : "技术部","provice" : "武汉市","city":"湖北省","area":"江汉区","address" : "湖北省武汉市江汉路","content" : "i like java developer","addtime":"1658041003000"}
{"index":{"_id": 7}}
{"empId" : "777","name" : "员工7","age" : 60,"sex" : "女","mobile" : "19000007777","salary":52130,"deptName" : "测试部","provice" : "湖北省","city":"黄冈市","area":"边城区","address" : "湖北省黄冈市边城区","content" : "i like elasticsearch developer","addtime":"1658040008000"}
{"index":{"_id": 8}}
{"empId" : "888","name" : "员工8","age" : 19,"sex" : "女","mobile" : "19000008888","salary":60000,"deptName" : "技术部","provice" : "湖北省","city":"武汉","area":"汉阳区","address" : "湖北省武汉市江汉大学","content" : "i like spark language","addtime":"1656040003000"}
{"index":{"_id": 9}}
{"empId" : "999","name" : "员工9","age" : 40,"sex" : "男","mobile" : "19000009999","salary":23000,"deptName" : "销售部","provice" : "河南省","city":"郑州市","area":"二七区","address" : "河南省郑州市郑州大学","content" : "i like java developer","addtime":"1608040003000"}
{"index":{"_id": 10}}
{"empId" : "101010","name" : "张湖北","age" : 35,"sex" : "男","mobile" : "19000001010","salary":18000,"deptName" : "测试部","provice" : "湖北省","city":"武汉","area":"高新开发区","address" : "湖北省武汉市东湖高新","content" : "i like java developer i also like  elasticsearch","addtime":"1654040003000"}
{"index":{"_id": 11}}
{"empId" : "111111","name" : "王河南","age" : 61,"sex" : "男","mobile" : "19000001011","salary":10000,"deptName" : "销售部",,"provice" : "河南省","city":"开封市","area":"金明区","address" : "河南省开封市河南大学","content" : "i am not like  java ","addtime":"1658740003000"}
{"index":{"_id": 12}}
{"empId" : "121212","name" : "张大学","age" : 26,"sex" : "女","mobile" : "19000001012","salary":1321,"deptName" : "测试部",,"provice" : "河南省","city":"开封市","area":"金明区","address" : "河南省开封市河南大学","content" : "i am java developer  thing java is good","addtime":"165704003000"}
{"index":{"_id": 13}}
{"empId" : "131313","name" : "李江汉","age" : 36,"sex" : "男","mobile" : "19000001013","salary":1125,"deptName" : "销售部","provice" : "河南省","city":"郑州市","area":"二七区","address" : "河南省郑州市二七区","content" : "i like java and java is very best i like it do you like java ","addtime":"1658140003000"}
{"index":{"_id": 14}}
{"empId" : "141414","name" : "王技术","age" : 45,"sex" : "女","mobile" : "19000001014","salary":6222,"deptName" : "测试部",,"provice" : "河南省","city":"郑州市","area":"金水区","address" : "河南省郑州市金水区","content" : "i like c++","addtime":"1656040003000"}
{"index":{"_id": 15}}
{"empId" : "151515","name" : "张测试","age" : 18,"sex" : "男","mobile" : "19000001015","salary":20000,"deptName" : "技术部",,"provice" : "河南省","city":"郑州市","area":"高新开发区","address" : "河南省郑州高新开发区","content" : "i think spark is good","addtime":"1658040003000"}


3. ES field data 使用及配置


3.1 field data防止内存溢出OOM配置及熔断控制

fielddata应该在JVM中合理利用,否则会影响es性能,正确使用fielddata要配置以下参数

indices.fielddata.cache.size限制fielddata内存使用,可以是具体大小(如2G),也可以是占用内存的百分比(如20%)
运行命令进行监控 GET /_stats/fielddata ,查看当前 fielddata占用内存大小
防止一次性加载字段直接超过内存值,就要使用熔断控制断路器, ES内部检查来估算一个查询需要的内存。它然后检查要求加载的 fielddata 是否会导致 fielddata 的总量超过堆的配置比例。如果估算查询大小超出限制,就会触发熔断,查询会被中止并返回异常 ,控制参数 indices.breaker.fielddata.limit/ indices.breaker.request.limit /indices.breaker.total.limit
#控制 fielddata可以使用多少jvm内存,一般不超过20%
 indices.fielddata.cache.size

#查看
get /_stats/fielddata
get /_stats/fielddata?fields=*

如果一次性加载字段直接超过内存值,就会触发熔断,查询会被中止并返回异常 
indices.breaker.fielddata.limit fielddata级别限制,默认为堆的60% 
indices.breaker.request.limit request级别请求限制,默认为堆的40% 
indices.breaker.total.limit 保证上面两者组合起来的限制,默认堆的70%

查询fielddata占用多少 memory信息 get /_stats/fielddata?fields=* ,可以看到 fielddata一共占了 1088bytes, 字段 provice fielddata 占了 504 bytes, 字段 name fielddata 占了 584 bytes


3.2 对text类型字段进行聚合


对text人名进行 聚合count操作, 出错

“reason” : “Text fields are not optimised for operations that require per-document field data like aggregations and sorting, so these operations are disabled by default. Please use a keyword field instead. Alternatively, set fielddata=true on [name] in order to load field data by uninverting the inverted index. Note that this can use significant memory.”

get /testquery/_search
{
   "size" : 0,
    "aggs" : {
        "count_name":{
          "cardinality": {
            "field": "name"
          }
        }
        }
    }
}


出错,因为name名字字段是text类型,但是没有设置 fielddata=true,所以不允许进行 聚合排序操作


3.3 修改 fielddata=true设置


修改聚合字段 name 的 设置 fielddata=true


PUT testquery/_mapping
{
  "properties": {
    "name": { 
      "type":     "text",
      "fielddata": true
    }
  }
}

再次执行上面的 aggs 语句


PUT testquery/_mapping
{
  "properties": {
    "name": { 
      "type":     "text",
      "fielddata": true
    }
  }
}

查询成功


至此 我们已经学习了 ES 正排索引,倒排索引的应用场景及优势/劣势, 再正确的场合使用正确的索引,才能提高查询效率, 还学些了 fielddata的 内存jvm控制参数,熔断策略等来 避免线上出现事故
————————————————
版权声明:本文为CSDN博主「jzjie」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/u010134642/article/details/125834384

这篇关于Elasticsearch实战(十八)--ES搜索Doc Values/Fielddata 正排索引 深入解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/162431

相关文章

在Java中使用ModelMapper简化Shapefile属性转JavaBean实战过程

《在Java中使用ModelMapper简化Shapefile属性转JavaBean实战过程》本文介绍了在Java中使用ModelMapper库简化Shapefile属性转JavaBean的过程,对比... 目录前言一、原始的处理办法1、使用Set方法来转换2、使用构造方法转换二、基于ModelMapper

C语言中自动与强制转换全解析

《C语言中自动与强制转换全解析》在编写C程序时,类型转换是确保数据正确性和一致性的关键环节,无论是隐式转换还是显式转换,都各有特点和应用场景,本文将详细探讨C语言中的类型转换机制,帮助您更好地理解并在... 目录类型转换的重要性自动类型转换(隐式转换)强制类型转换(显式转换)常见错误与注意事项总结与建议类型

Java实战之自助进行多张图片合成拼接

《Java实战之自助进行多张图片合成拼接》在当今数字化时代,图像处理技术在各个领域都发挥着至关重要的作用,本文为大家详细介绍了如何使用Java实现多张图片合成拼接,需要的可以了解下... 目录前言一、图片合成需求描述二、图片合成设计与实现1、编程语言2、基础数据准备3、图片合成流程4、图片合成实现三、总结前

MySQL 缓存机制与架构解析(最新推荐)

《MySQL缓存机制与架构解析(最新推荐)》本文详细介绍了MySQL的缓存机制和整体架构,包括一级缓存(InnoDBBufferPool)和二级缓存(QueryCache),文章还探讨了SQL... 目录一、mysql缓存机制概述二、MySQL整体架构三、SQL查询执行全流程四、MySQL 8.0为何移除查

在Rust中要用Struct和Enum组织数据的原因解析

《在Rust中要用Struct和Enum组织数据的原因解析》在Rust中,Struct和Enum是组织数据的核心工具,Struct用于将相关字段封装为单一实体,便于管理和扩展,Enum用于明确定义所有... 目录为什么在Rust中要用Struct和Enum组织数据?一、使用struct组织数据:将相关字段绑

使用Java实现一个解析CURL脚本小工具

《使用Java实现一个解析CURL脚本小工具》文章介绍了如何使用Java实现一个解析CURL脚本的工具,该工具可以将CURL脚本中的Header解析为KVMap结构,获取URL路径、请求类型,解析UR... 目录使用示例实现原理具体实现CurlParserUtilCurlEntityICurlHandler

深入解析Spring TransactionTemplate 高级用法(示例代码)

《深入解析SpringTransactionTemplate高级用法(示例代码)》TransactionTemplate是Spring框架中一个强大的工具,它允许开发者以编程方式控制事务,通过... 目录1. TransactionTemplate 的核心概念2. 核心接口和类3. TransactionT

数据库使用之union、union all、各种join的用法区别解析

《数据库使用之union、unionall、各种join的用法区别解析》:本文主要介绍SQL中的Union和UnionAll的区别,包括去重与否以及使用时的注意事项,还详细解释了Join关键字,... 目录一、Union 和Union All1、区别:2、注意点:3、具体举例二、Join关键字的区别&php

Java实现Elasticsearch查询当前索引全部数据的完整代码

《Java实现Elasticsearch查询当前索引全部数据的完整代码》:本文主要介绍如何在Java中实现查询Elasticsearch索引中指定条件下的全部数据,通过设置滚动查询参数(scrol... 目录需求背景通常情况Java 实现查询 Elasticsearch 全部数据写在最后需求背景通常情况下

深入理解Apache Airflow 调度器(最新推荐)

《深入理解ApacheAirflow调度器(最新推荐)》ApacheAirflow调度器是数据管道管理系统的关键组件,负责编排dag中任务的执行,通过理解调度器的角色和工作方式,正确配置调度器,并... 目录什么是Airflow 调度器?Airflow 调度器工作机制配置Airflow调度器调优及优化建议最