统计教程|PASS实现单因素二元Logistic回归分析且自变量为二分类的优势比检验的样本量估计

本文主要是介绍统计教程|PASS实现单因素二元Logistic回归分析且自变量为二分类的优势比检验的样本量估计,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在对临床数据的探索分析工作中,我们经常会使用Logistic回归分析去探索影响疾病的发生、发展的重要影响因素,或应用Logistic回归模型进行相关的预测分析。但是在进行Logistic回归分析时,样本含量的估计常常是令临床科研工作者最头痛的一件事了。常常纠结选哪些作为自变量或选多少个合适,因为大家通常采取的办法是选取研究中拟纳入的协变量个数的10~15倍(也有教科书上指出:经验上病例和对照的人数应该至少各有30~50例)作为样本含量的估计值。但大家应该注意,这个条件仅满足了多因素Logistic回归分析时数学运算所需的最低要求,这并不能保证足够的检验效能;此外,当研究设计阶段对协变量信息认识不全面时,也给样本含量的估计带来了困难。

由于Logistic回归主要描述了因变量和自变量间的一种非线性的关系,在进行Logistic回归分析的样本量估算时应根据其各自不同的适用条件选取不同的估算公式。不同的软件采用的样本量计算公式有所差异PASS软件作为功能强大的样本量计算软件,针对多种Logistic回归分析的都有针对的模块可进行计算,今天我们主要讲解PASS15.0软件实现当自变量为二分类的单因素二元Logistic回归分析时其优势比Wald检验的样本量估计。在PASS15.0软件中使用的是Demidenko等人2007年提出的近似公式,当只有一个自变量(假设该自变量为X)且为二分类变量时(X=0表示未发生,X=1表示发生),其主要的计算公式如下:

其中`P=(1-R)P0+ R(P1),即研究对象中Y=1的比例。

公式中,N为所需的样本含量,P0为X=0时Y=1的发生率,P1为X=1时Y=1的发生率(有时我们只知道OR,此时我们可根据:

得到:

但是在PASS15软件中可选择直接采用OR值进行计算),R为研究对象中X=1的比例,Z1-α/2表示标准正态分布的第1-α/2分位数或双侧α界值、Z1-β表示标准正态分布的第1-β分位数或单侧β界值,Z1-α/2和Z1-β均可通过查阅Z值表获得。

下面我们在本节将主要讲解采用PASS15.0软件实现当只有一个二分类变量时单因素二元Logistic回归分析时其优势比Wald检验所需样本含量估计方法。

例:假设某妇产科医生想研究同型半胱氨酸(HCY)与早产的关系,有报道表明,当孕妇血浆中HCY<12.4μmol/L时发生率为0.06,HCY≥12.4μmol/L时发生率为0.18,假定孕妇中HCY≥12.4μmol/L的人群占比为7%,α=0.05(双侧检验),β=0.20,问需要调查多少研究对象?

解析:本例严格来说应属于调查研究,其主要结局指标是是否发生早产,为二分类变量,主要研究因素(X)为孕妇的HCY是否≥12.4μmol/L,主要目的是研究HCY的水平与早产发生的关系,故我们可采用单因素Logistic回归分析两者的因果关系,可采用协变量为二分类变量的单因素二元Logistic回归分析的计算公式进行样本含量估算。本例共确定了五个参数:①α=0.05(双侧检验);②检验效能(1-β)=0.8;③X=0时Y=1的发生率(P0)=0.06,④X=1时Y=1的发生率(P1)=0.18;⑤研究对象中X=1的比例 R=7%。

PASS软件样本含量估算的具体步骤:

01 PASS主菜单进入样本含量估算设置界面:

打开PASS15软件,①点击Regression菜单并双击或其前面的“+”展开子菜单栏;→②点击Logistic Regression菜单并双击或其前面的“+”展开子菜单栏;→③点击Binary X(Wald Test);→④点击Tests for the Odds Ratio in Logistic Regression with One Binary X(Wald Test)→弹出Tests for the Odds Ratio in Logistic Regression with One Binary X(Wald Test)对话框进入单因素二元Logistic回归分析的样本含量估计界面,详见操作示意图(图1)。

02 PASS样本含量估算参数设置:

①Solve For:Sample Size,首先说明我们本次所求的结果为样本含量;→②Alternative Hypothesis:Two-Sided,表明进行双侧检验;→③Power:0.8,表明检验效能(1-β)为80%;→④Alpha:0.05,表示检验水准为0.05;→⑤P0[Pr(Y=1|X=0)]:0.06 ,指定X=0时Y=1的发生概率,即本例当HCY<12.4μmol/L时发生早产的概率为0.06;→⑥Use P1 or ORyx:P1,指定采用指标P1还是ORyx估算样本量(P1和ORyx可根据相关公式相互转换),由于本例知道了P1的取值,故本例选择采用P1估算样本量;→⑦P1[Pr(Y=1|X=1)]:0.18,指定X=1时Y=1的发生概率,即本例当HCY≥12.4μmol/L时发生早产的概率为0.18;→⑧Percent with X=1:7,指定研究对象中X=1的比例,即本例中孕妇人群中HCY≥12.4μmol/L的患者比例大约占总人群的7%;→⑨击Calculate按钮,完成单因素二元Logistic回归分析的样本含量估算,详见操作示意图(图2)。

03 PASS样本含量估算结果:

由图3可知,PASS软件给出的自变量为二分类的单因素二元Logistic回归分析样本含量估算结果主要有:样本含量估算的结果、相关参考文献、样本量估算报告中出现各名词的定义、对计算结果的总结描述以及假定脱落率为20%时所需的样本含量估计结果和其各名词的相关定义。由于脱落率不同研究结果各不相同,故本次不看脱落率为20%的相关结果,我们主要关注N这一结果即可:本研究最少需要596例孕妇作为研究对象才可能得出HCY含量高低与早产的发生有显著相关的结论。

想要了解更多统计教程相关知识,可到常笑医学网医学统计栏目进行查询和学习。

这篇关于统计教程|PASS实现单因素二元Logistic回归分析且自变量为二分类的优势比检验的样本量估计的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/162205

相关文章

Linux下删除乱码文件和目录的实现方式

《Linux下删除乱码文件和目录的实现方式》:本文主要介绍Linux下删除乱码文件和目录的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下删除乱码文件和目录方法1方法2总结Linux下删除乱码文件和目录方法1使用ls -i命令找到文件或目录

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串

SpringBoot+EasyExcel实现自定义复杂样式导入导出

《SpringBoot+EasyExcel实现自定义复杂样式导入导出》这篇文章主要为大家详细介绍了SpringBoot如何结果EasyExcel实现自定义复杂样式导入导出功能,文中的示例代码讲解详细,... 目录安装处理自定义导出复杂场景1、列不固定,动态列2、动态下拉3、自定义锁定行/列,添加密码4、合并

mybatis执行insert返回id实现详解

《mybatis执行insert返回id实现详解》MyBatis插入操作默认返回受影响行数,需通过useGeneratedKeys+keyProperty或selectKey获取主键ID,确保主键为自... 目录 两种方式获取自增 ID:1. ​​useGeneratedKeys+keyProperty(推

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控

Linux在线解压jar包的实现方式

《Linux在线解压jar包的实现方式》:本文主要介绍Linux在线解压jar包的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux在线解压jar包解压 jar包的步骤总结Linux在线解压jar包在 Centos 中解压 jar 包可以使用 u

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

c++ 类成员变量默认初始值的实现

《c++类成员变量默认初始值的实现》本文主要介绍了c++类成员变量默认初始值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录C++类成员变量初始化c++类的变量的初始化在C++中,如果使用类成员变量时未给定其初始值,那么它将被

Qt使用QSqlDatabase连接MySQL实现增删改查功能

《Qt使用QSqlDatabase连接MySQL实现增删改查功能》这篇文章主要为大家详细介绍了Qt如何使用QSqlDatabase连接MySQL实现增删改查功能,文中的示例代码讲解详细,感兴趣的小伙伴... 目录一、创建数据表二、连接mysql数据库三、封装成一个完整的轻量级 ORM 风格类3.1 表结构

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过