本文主要是介绍【DL--03】深度学习基本概念—张量,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
张量
TensorFlow中的中心数据单位是张量。张量由一组成形为任意数量的数组的原始值组成。张量的等级是其维数。以下是张量的一些例子:
3 # a rank 0 tensor; this is a scalar with shape []
[1. ,2., 3.] # a rank 1 tensor; this is a vector with shape [3]
[[1., 2., 3.], [4., 5., 6.]] # a rank 2 tensor; a matrix with shape [2, 3]
[[[1., 2., 3.]], [[7., 8., 9.]]] # a rank 3 tensor with shape [2, 1, 3]
张量,或tensor,是本文档会经常出现的一个词汇,在此稍作解释。
使用这个词汇的目的是为了表述统一,张量可以看作是向量、矩阵的自然推广,我们用张量来表示广泛的数据类型。
规模最小的张量是0阶张量,即标量,也就是一个数。
当我们把一些数有序的排列起来,就形成了1阶张量,也就是一个向量
如果我们继续把一组向量有序的排列起来,就形成了2阶张量,也就是一个矩阵
把矩阵摞起来,就是3阶张量,我们可以称为一个立方体,具有3个颜色通道的彩色图片就是一个这样的立方体
把立方体摞起来,好吧这次我们真的没有给它起别名了,就叫4阶张量了,不要去试图想像4阶张量是什么样子,它就是个数学上的概念。
张量的阶数有时候也称为维度,或者轴,轴这个词翻译自英文axis。譬如一个矩阵[[1,2],[3,4]],是一个2阶张量,有两个维度或轴,沿着第0个轴(为了与python的计数方式一致,本文档维度和轴从0算起)你看到的是[1,2],[3,4]两个向量,沿着第1个轴你看到的是[1,3],[2,4]两个向量。
要理解“沿着某个轴”是什么意思,不妨试着运行一下下面的代码:
import numpy as np
a = np.array([[1,2],[3,4]])
sum0 = np.sum(a, axis=0)
sum1 = np.sum(a, axis=1)
print a
print sum0
print sum1
关于张量,目前知道这么多就足够了。事实上我也就知道这么多
这篇关于【DL--03】深度学习基本概念—张量的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!