期货赫兹量化-种群优化算法:进化策略,(μ,λ)-ES 和 (μ+λ)-ES

2024-09-07 00:04

本文主要是介绍期货赫兹量化-种群优化算法:进化策略,(μ,λ)-ES 和 (μ+λ)-ES,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

进化策略(Evolution Strategies, ES)是一种启发式算法,旨在模仿自然选择的过程来解决复杂的优化问题,尤其在没有显式解、或搜索空间巨大的情况下表现良好。基于自然界的进化原理,进化策略通过突变、选择等遗传算子迭代生成解,并最终寻求全局最优解。

进化策略通常基于两个核心机制:突变和选择。突变是对当前解进行随机扰动,而选择则用于保留适应度更高的个体。本文详细介绍了 (μ,λ)-ES 和 (μ+λ)-ES 两种主要的进化策略变体。

主要变体

  1. (1+1)-ES:

    • 这是最简单的变体,适用于小规模问题。
    • 每次只创建一个后代,与当前解进行比较,保留最优者。
    • 由于仅依赖一个突变解,因此在高维问题上表现不佳。
  2. (μ,λ)-ES:

    • 该变体每次生成 λ 个后代,并从中选择最优的 μ 个后代作为下一代的亲本。
    • 亲本会在每一代被完全替换,促进了对解空间的全面探索。
    • 该方法有助于避免过早收敛,适用于更复杂的问题。
  3. (μ+λ)-ES:

    • 类似于 (μ,λ)-ES,但亲本和后代共同参与竞争。
    • 该方法允许最佳的亲本保留到下一代,保持多样性,同时进一步探索局部和全局解。

优化方法

进化策略可以通过引入重组进一步优化。重组允许多个亲本的遗传信息结合到同一个后代中,从而提升群体的多样性和适应性。这使得进化策略能够更有效地搜索解空间,找到比单一突变更优的解。

在典型的 (μ,λ)-ES 算法中,每一代群体会完全替换为新的后代,而 (μ+λ)-ES 则允许亲本和后代之间的竞争。由于 (μ+λ)-ES 结合了亲本和后代的优势,其收敛性通常优于 (μ,λ)-ES。

伪代码示例

(μ,λ)-ES:

 

text

复制代码

1. 初始化一个随机个体的群体。 2. 重复直到满足停止条件: 2.1 对每个亲本使用突变操作生成 λ 个后代。 2.2 选择 λ 个后代中的最佳 μ 个组成新的亲本群体。 3. 返回最优解。

(μ+λ)-ES:

 

text

复制代码

1. 初始化一个随机个体的群体。 2. 重复直到满足停止条件: 2.1 对每个亲本使用突变操作生成 λ 个后代。 2.2 将亲本与后代合并,选择最优的 μ 个个体作为新的亲本群体。 3. 返回最优解。

通过对 (μ,λ)-ES 添加重组,可以在每一代生成的后代中加入更多的多样性,这将进一步提高算法的搜索效率。在复杂多维问题上,重组可以避免算法陷入局部最优解,从而有助于找到全局最优解。

总结

进化策略算法通过模拟自然选择和进化过程,利用遗传算子如突变和重组来生成优化解。它们尤其适用于复杂的多维优化问题。

这篇关于期货赫兹量化-种群优化算法:进化策略,(μ,λ)-ES 和 (μ+λ)-ES的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1143498

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

在JS中的设计模式的单例模式、策略模式、代理模式、原型模式浅讲

1. 单例模式(Singleton Pattern) 确保一个类只有一个实例,并提供一个全局访问点。 示例代码: class Singleton {constructor() {if (Singleton.instance) {return Singleton.instance;}Singleton.instance = this;this.data = [];}addData(value)

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO