本文主要是介绍分布式系统理论进阶:Paxos变种和优化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
GitHub:https://github.com/wangzhiwubigdata/God-Of-BigData
关注公众号,内推,面试,资源下载,关注更多大数据技术~大数据成神之路~预计更新500+篇文章,已经更新50+篇~
引言
《分布式系统理论进阶 - Paxos》中我们了解了Basic Paxos、Multi Paxos的基本原理,但如果想把Paxos应用于工程实践,了解基本原理还不够。
有很多基于Paxos的优化,在保证一致性协议正确(safety)的前提下,减少Paxos决议通信步骤、避免单点故障、实现节点负载均衡,从而降低时延、增加吞吐量、提升可用性,下面我们就来了解这些Paxos变种。
Multi Paxos
首先我们来回顾一下Multi Paxos,Multi Paxos在Basic Paxos的基础上确定一系列值,其决议过程如下:
phase1a: leader提交提议给acceptor
phase1b: acceptor返回最近一次接受的提议(即曾接受的最大的提议ID和对应的value),未接受过提议则返回空
phase2a: leader收集acceptor的应答,分两种情况处理
phase2a.1: 如果应答内容都为空,则自由选择一个提议value
phase2a.2: 如果应答内容不为空,则选择应答里面ID最大的提议的value
phase2b: acceptor将决议同步给learner
Multi Paxos中leader用于避免活锁,但leader的存在会带来其他问题,一是如何选举和保持唯一leader(虽然无leader或多leader不影响一致性,但影响决议进程progress),二是充当leader的节点会承担更多压力,如何均衡节点的负载。Mencius[1]提出节点轮流担任leader,以达到均衡负载的目的;租约(lease)可以帮助实现唯一leader,但leader故障情况下可导致服务短期不可用。
Fast Paxos
在Multi Paxos中,proposer -> leader -> acceptor -> learner,从提议到完成决议共经过3次通信,能不能减少通信步骤?
对Multi Paxos phase2a,如果可以自由提议value,则可以让proposer直接发起提议、leader退出通信过程,变为proposer -> acceptor -> learner,这就是Fast Paxos[2]的由来。
Multi Paxos里提议都由leader提出,因而不存在一次决议出现多个value,Fast Paxos里由proposer直接提议,一次决议里可能有多个proposer提议、出现多个value,即出现提议冲突(collision)。leader起到初始化决议进程(progress)和解决冲突的作用,当冲突发生时leader重新参与决议过程、回退到3次通信步骤。
Paxos自身隐含的一个特性也可以达到减少通信步骤的目标,如果acceptor上一次确定(chosen)的提议来自proposerA,则当次决议proposerA可以直接提议减少一次通信步骤。如果想实现这样的效果,需要在proposer、acceptor记录上一次决议确定(chosen)的历史,用以在提议前知道哪个proposer的提议上一次被确定、当次决议能不能节省一次通信步骤。
EPaxos
除了从减少通信步骤的角度提高Paxos决议效率外,还有其他方面可以降低Paxos决议时延,比如Generalized Paxos[3]提出不冲突的提议(例如对不同key的写请求)可以同时决议、以降低Paxos时延。
更进一步地,EPaxos[4](Egalitarian Paxos)提出一种既支持不冲突提议同时提交降低时延、还均衡各节点负载、同时将通信步骤减少到最少的Paxos优化方法。
为达到这些目标,EPaxos的实现有几个要点。一是EPaxos中没有全局的leader,而是每一次提议发起提议的proposer作为当次提议的leader(command leader);二是不相互影响(interfere)的提议可以同时提交;三是跳过prepare,直接进入accept阶段。EPaxos决议的过程如下:
左侧展示了互不影响的两个update请求的决议过程,右侧展示了相互影响的两个update请求的决议。Multi Paxos、Mencius、EPaxos时延和吞吐量对比:
为判断决议是否相互影响,实现EPaxos得记录决议之间的依赖关系。
小结
以上介绍了几个基于Paxos的变种,Mencius中节点轮流做leader、均衡节点负载,Fast Paxos减少一次通信步骤,Generalized Paxos允许互不影响的决议同时进行,EPaxos无全局leader、各节点平等分担负载。
优化无止境,对Paxos也一样,应用在不同场景和不同范围的Paxos变种和优化将继续不断出现。
引用列表
[1] Mencius: Building Efficient Replicated State Machines for WANs, Yanhua Mao,Flavio P. Junqueira,Keith Marzullo, 2018
[2] Fast Paxos, Leslie Lamport, 2005
[3] Generalized Consensus and Paxos, Leslie Lamport, 2004
[4] There Is More Consensus in Egalitarian Parliaments, Iulian Moraru, David G. Andersen, Michael Kaminsky, 2013
这篇关于分布式系统理论进阶:Paxos变种和优化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!