OpenCV结构分析与形状描述符(6)带统计的连通组件计算函数connectedComponentsWithStats()的使用

本文主要是介绍OpenCV结构分析与形状描述符(6)带统计的连通组件计算函数connectedComponentsWithStats()的使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

connectedComponentsWithStats 函数计算布尔图像的连通组件标记图像,并为每个标记产生统计信息。

该函数接受一个具有4或8连通性的二值图像,并返回 N,即标签总数(标签范围为 [0, N-1],其中 0 代表背景标签)。ltype 参数指定了输出标签图像的类型,这是基于标签总数或源图像中的像素总数的一个重要考虑因素。ccltype 参数指定了要使用的连通组件标记算法,目前支持 Bolelli(Spaghetti)[31]、Grana(BBDT)[108] 和 Wu(SAUF)[296] 算法,详见 ConnectedComponentsAlgorithmsTypes。请注意,SAUF 算法强制使用行主序(row-major order)的标签,而 Spaghetti 和 BBDT 不强制。如果至少有一个允许的并行框架被启用,并且图像的行数至少是 getNumberOfCPUs 返回值的两倍,该函数将使用并行版本的算法(包括统计信息)。

函数原型


int cv::connectedComponentsWithStats	
(InputArray 	image,OutputArray 	labels,OutputArray 	stats,OutputArray 	centroids,int 	connectivity,int 	ltype,int 	ccltype 
)		

参数

  • 参数image: 要标记的8位单通道图像。
  • 参数labels: 目标标记图像。
  • 参数stats: 每个标记(包括背景标记)的统计信息输出。统计信息通过 stats(label, COLUMN) 访问,其中 COLUMN 是 ConnectedComponentsTypes 中的一个选择项,数据类型为 CV_32S。
  • 参数centroids: 每个标记(包括背景标记)的质心输出。质心通过 centroids(label, 0) (x坐标)和 centroids(label, 1) (y坐标)访问,数据类型为 CV_64F。
  • 参数connectivity: 连通性设置,8表示8邻接,4表示4邻接。
  • 参数ltype: 输出图像的标签类型。目前支持 CV_32S 和 CV_16U。
  • 参数ccltype: 连通组件算法类型(详见 ConnectedComponentsAlgorithmsTypes)。

代码示例

终端输出:

Number of components: 2
Component 1: Left: 50, Top: 50, Width: 200, Height: 200, Area: 20000
Centroid of Component 1: (149.5, 149.5)

图像输出

在这里插入图片描述

这篇关于OpenCV结构分析与形状描述符(6)带统计的连通组件计算函数connectedComponentsWithStats()的使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1141401

相关文章

JS常用组件收集

收集了一些平时遇到的前端比较优秀的组件,方便以后开发的时候查找!!! 函数工具: Lodash 页面固定: stickUp、jQuery.Pin 轮播: unslider、swiper 开关: switch 复选框: icheck 气泡: grumble 隐藏元素: Headroom

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

hdu1496(用hash思想统计数目)

作为一个刚学hash的孩子,感觉这道题目很不错,灵活的运用的数组的下标。 解题步骤:如果用常规方法解,那么时间复杂度为O(n^4),肯定会超时,然后参考了网上的解题方法,将等式分成两个部分,a*x1^2+b*x2^2和c*x3^2+d*x4^2, 各自作为数组的下标,如果两部分相加为0,则满足等式; 代码如下: #include<iostream>#include<algorithm

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

hdu1171(母函数或多重背包)

题意:把物品分成两份,使得价值最接近 可以用背包,或者是母函数来解,母函数(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v) 其中指数为价值,每一项的数目为(该物品数+1)个 代码如下: #include<iostream>#include<algorithm>

如何在页面调用utility bar并传递参数至lwc组件

1.在app的utility item中添加lwc组件: 2.调用utility bar api的方式有两种: 方法一,通过lwc调用: import {LightningElement,api ,wire } from 'lwc';import { publish, MessageContext } from 'lightning/messageService';import Ca