最优化方法Python计算:二次规划的拉格朗日算法

2024-09-05 08:20

本文主要是介绍最优化方法Python计算:二次规划的拉格朗日算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目标函数为二次式,约束条件为线性式的最优化问题称为二次规划。其一般形式为
{ minimize 1 2 x ⊤ H x + c ⊤ x s.t.   A e q x − b e q = o A i q x − b i q ≥ o . \begin{cases} \text{minimize}\quad \frac{1}{2}\boldsymbol{x}^\top\boldsymbol{Hx}+\boldsymbol{c}^\top\boldsymbol{x}\\ \text{s.t.\ \ }\quad\quad\quad\boldsymbol{A}_{eq}\boldsymbol{x}-\boldsymbol{b}_{eq}=\boldsymbol{o}\\ \quad\quad\quad\quad\quad\boldsymbol{A}_{iq}\boldsymbol{x}-\boldsymbol{b}_{iq}\geq\boldsymbol{o} \end{cases}. minimize21xHx+cxs.t.  Aeqxbeq=oAiqxbiqo.
其中, H ∈ R n × n \boldsymbol{H}\in\text{R}^{n\times n} HRn×n对称, c ∈ R n \boldsymbol{c}\in\text{R}^n cRn A e q ∈ R l × n \boldsymbol{A}_{eq}\in\text{R}^{l\times n} AeqRl×n b e q ∈ R l \boldsymbol{b}_{eq}\in\text{R}^l beqRl A i q ∈ R m × n \boldsymbol{A}_{iq}\in\text{R}^{m\times n} AiqRm×n b i q ∈ R m \boldsymbol{b}_{iq}\in\text{R}^m biqRm
仅含等式约束的二次规划形如
{ minimize 1 2 x ⊤ H x + c ⊤ x s.t.   A x − b = o . ( 1 ) \begin{cases} \text{minimize}\quad \frac{1}{2}\boldsymbol{x}^\top\boldsymbol{Hx}+\boldsymbol{c}^\top\boldsymbol{x}\\ \text{s.t.\ \ }\quad\quad\quad\boldsymbol{Ax}-\boldsymbol{b}=\boldsymbol{o} \end{cases}.\quad\quad(1) {minimize21xHx+cxs.t.  Axb=o.(1)
假定 H \boldsymbol{H} H对称正定, A ∈ R l × n \boldsymbol{A}\in\text{R}^{l\times n} ARl×n,rank A = l \boldsymbol{A}=l A=l。正定二次式 1 2 x ⊤ H x + c ⊤ x \frac{1}{2}\boldsymbol{x}^\top\boldsymbol{Hx}+\boldsymbol{c}^\top\boldsymbol{x} 21xHx+cx在凸集 Ω = { x ∣ A x − b = o } \Omega=\{\boldsymbol{x}|\boldsymbol{Ax}-\boldsymbol{b}=\boldsymbol{o}\} Ω={xAxb=o}上有唯一满足必要条件的KKT点 ( x 0 λ 0 ) \begin{pmatrix}\boldsymbol{x}_0\\\boldsymbol{\lambda}_0\end{pmatrix} (x0λ0)。为算得该KKT点,写出问题的拉格朗日函数
L ( x , λ ) = 1 2 x ⊤ H x + c ⊤ x − λ ⊤ ( A x − b ) . L(\boldsymbol{x},\boldsymbol{\lambda})=\frac{1}{2}\boldsymbol{x}^\top\boldsymbol{Hx}+\boldsymbol{c}^\top\boldsymbol{x}-\boldsymbol{\lambda}^\top(\boldsymbol{Ax}-\boldsymbol{b}). L(x,λ)=21xHx+cxλ(Axb).
关于 x \boldsymbol{x} x λ \boldsymbol{\lambda} λ的梯度为
∇ x L ( x , λ ) = H x + c − A ⊤ λ ∇ λ L ( x , λ ) = − A x + b \begin{array}{l} \nabla_{\boldsymbol{x}}L(\boldsymbol{x},\boldsymbol{\lambda})=\boldsymbol{Hx}+\boldsymbol{c}-\boldsymbol{A}^\top\boldsymbol{\lambda}\\ \nabla_{\boldsymbol{\lambda}}L(\boldsymbol{x},\boldsymbol{\lambda})=-\boldsymbol{Ax}+\boldsymbol{b} \end{array} xL(x,λ)=Hx+cAλλL(x,λ)=Ax+b
∇ x L ( x , λ ) = o \nabla_{\boldsymbol{x}}L(\boldsymbol{x},\boldsymbol{\lambda})=\boldsymbol{o} xL(x,λ)=o ∇ λ L ( x , λ ) = o \nabla_{\boldsymbol{\lambda}}L(\boldsymbol{x},\boldsymbol{\lambda})=\boldsymbol{o} λL(x,λ)=o,得线性方程组
{ H x + c − A ⊤ λ = o − A x + b = o , \begin{cases} \boldsymbol{Hx}+\boldsymbol{c}-\boldsymbol{A}^\top\boldsymbol{\lambda}=\boldsymbol{o}\\ -\boldsymbol{Ax}+\boldsymbol{b}=\boldsymbol{o} \end{cases}, {Hx+cAλ=oAx+b=o,
等价地表示为
( H − A ⊤ − A O ) ( x λ ) = ( − c − b ) . \begin{pmatrix}\boldsymbol{H}&-\boldsymbol{A}^\top\\-\boldsymbol{A}&\boldsymbol{O}\end{pmatrix}\begin{pmatrix}\boldsymbol{x}\\\boldsymbol{\lambda}\end{pmatrix} =\begin{pmatrix}-\boldsymbol{c}\\-\boldsymbol{b}\end{pmatrix}. (HAAO)(xλ)=(cb).
系数矩阵 ( H − A ⊤ − A O ) \begin{pmatrix}\boldsymbol{H}&-\boldsymbol{A}^\top\\-\boldsymbol{A}&\boldsymbol{O}\end{pmatrix} (HAAO)称为拉格朗日矩阵。由 H \boldsymbol{H} H对称正定且rank A = l \boldsymbol{A}=l A=l的假设,拉格朗日矩阵可逆,设
( H − A ⊤ − A O ) − 1 = ( Q − R ⊤ − R S ) , \begin{pmatrix}\boldsymbol{H}&-\boldsymbol{A}^\top\\-\boldsymbol{A}&\boldsymbol{O}\end{pmatrix}^{-1}=\begin{pmatrix}\boldsymbol{Q}&-\boldsymbol{R}^\top\\-\boldsymbol{R}&\boldsymbol{S}\end{pmatrix}, (HAAO)1=(QRRS),
根据
( H − A ⊤ − A O ) ( Q − R ⊤ − R S ) = I \begin{pmatrix}\boldsymbol{H}&-\boldsymbol{A}^\top\\-\boldsymbol{A}&\boldsymbol{O}\end{pmatrix}\begin{pmatrix}\boldsymbol{Q}&-\boldsymbol{R}^\top\\-\boldsymbol{R}&\boldsymbol{S}\end{pmatrix}=\boldsymbol{I} (HAAO)(QRRS)=I
算得
{ H Q + A ⊤ R = I − H R ⊤ − A ⊤ S = O − A Q = O A R ⊤ = I \begin{cases} \boldsymbol{HQ}+\boldsymbol{A}^\top\boldsymbol{R}=\boldsymbol{I}\\ -\boldsymbol{H}\boldsymbol{R}^\top-\boldsymbol{A}^\top\boldsymbol{S}=\boldsymbol{O}\\ -\boldsymbol{AQ}=\boldsymbol{O}\\ \boldsymbol{AR}^\top=\boldsymbol{I} \end{cases} HQ+AR=IHRAS=OAQ=OAR=I
由于 A \boldsymbol{A} A行满秩,故 A H − 1 A ⊤ \boldsymbol{AH}^{-1}\boldsymbol{A}^\top AH1A可逆。 ( A H − 1 A ⊤ ) − 1 A H − 1 (\boldsymbol{AH}^{-1}\boldsymbol{A}^\top)^{-1}\boldsymbol{AH}^{-1} (AH1A)1AH1 A ⊤ \boldsymbol{A}^\top A的伪逆。解上列连立式得
{ S = − ( A H − 1 A ⊤ ) − 1 R = − S A H − 1 Q = H − 1 − H − 1 A ⊤ R \begin{cases}\boldsymbol{S}=-(\boldsymbol{AH}^{-1}\boldsymbol{A}^\top)^{-1}\\\boldsymbol{R}=-\boldsymbol{SAH}^{-1}\\\boldsymbol{Q}=\boldsymbol{H}^{-1}-\boldsymbol{H}^{-1}\boldsymbol{A}^\top\boldsymbol{R}\end{cases} S=(AH1A)1R=SAH1Q=H1H1AR
于是,二次规划(1)的KKT点
( x 0 λ 0 ) = ( Q − R ⊤ − R S ) ( − c − b ) = ( − Q c + R ⊤ b R c − S b ) . \begin{pmatrix}\boldsymbol{x}_0\\\boldsymbol{\lambda}_0\end{pmatrix}=\begin{pmatrix}\boldsymbol{Q}&-\boldsymbol{R}^\top\\-\boldsymbol{R}&\boldsymbol{S}\end{pmatrix}\begin{pmatrix}-\boldsymbol{c}\\-\boldsymbol{b}\end{pmatrix}=\begin{pmatrix}-\boldsymbol{Qc}+\boldsymbol{R}^\top\boldsymbol{b}\\\boldsymbol{Rc}-\boldsymbol{Sb} \end{pmatrix}. (x0λ0)=(QRRS)(cb)=(Qc+RbRcSb).
下列代码实现求解等式约束二次规划(1)的拉格朗日算法。

import numpy as np										#导入numpy
def qlag(H, A, b, c):H1 = np.linalg.inv(H)								#H的逆阵S = -np.linalg.inv(np.matmul(np.matmul(A, H1), A.T))R = -np.matmul(np.matmul(S, A), H1)Q = H1 - np.matmul(np.matmul(H1, A.T), R)x0 = -np.matmul(Q, c) + np.matmul(R.T, b)			#最优解lamd0 = np.matmul(R, c) - np.matmul(S, b)			#拉格朗日乘子return x0, lamd0

程序的第2~9行定义的函数qlag实现拉格朗日算法。qlag的4个参数H,A,b和c分别表示二次规划(1)中的正定矩阵 H \boldsymbol{H} H,行满秩阵 A \boldsymbol{A} A,向量 b \boldsymbol{b} b c \boldsymbol{c} c
函数体内的第3行调用numpy.linalg的inv函数计算 H \boldsymbol{H} H的逆阵 H − 1 \boldsymbol{H}^{-1} H1,赋予H1。第4~6行分别计算
S = − ( A H − 1 A ⊤ ) − 1 R = − S A H − 1 Q = H − 1 − H − 1 A ⊤ R \begin{array}{l} \boldsymbol{S}=-(\boldsymbol{AH}^{-1}\boldsymbol{A}^\top)^{-1}\\ \boldsymbol{R}=-\boldsymbol{SAH}^{-1}\\ \boldsymbol{Q}=\boldsymbol{H}^{-1}-\boldsymbol{H}^{-1}\boldsymbol{A}^\top\boldsymbol{R} \end{array} S=(AH1A)1R=SAH1Q=H1H1AR
并赋予S,R和Q。第7、8行分别计算最优解和对应的拉格朗日乘子
x 0 = − Q c + R ⊤ b λ 0 = R c − S b \begin{array}{l} \boldsymbol{x}_0=-\boldsymbol{Qc}+\boldsymbol{R}^\top\boldsymbol{b}\\ \boldsymbol{\lambda}_0=\boldsymbol{Rc}-\boldsymbol{Sb} \end{array} x0=Qc+Rbλ0=RcSb
并赋予x0和lamd0。
例1用qlag函数求解下列二次规划
{ minimize x 1 2 + 2 x 2 2 + x 3 2 − 2 x 1 x 2 + x 3 s.t.   x 1 + x 2 + x 3 = 4 2 x 1 − x 2 + x 3 = 2 . \begin{cases} \text{minimize}\quad x_1^2+2x_2^2+x_3^2-2x_1x_2+x_3\\ \text{s.t.\ \ }\quad\quad\quad x_1+x_2+x_3=4\\ \quad\quad\quad\quad\quad 2x_1-x_2+x_3=2 \end{cases}. minimizex12+2x22+x322x1x2+x3s.t.  x1+x2+x3=42x1x2+x3=2.
:本问题中,
H = ( 2 − 2 0 − 2 4 0 0 0 2 ) , A = ( 1 1 1 2 − 1 1 ) , b = ( 4 2 ) , c = ( 0 0 1 ) \boldsymbol{H}=\begin{pmatrix}2&-2&0\\-2&4&0\\0&0&2\end{pmatrix},\boldsymbol{A}=\begin{pmatrix}1&1&1\\2&-1&1\end{pmatrix},\boldsymbol{b}=\begin{pmatrix}4\\2\end{pmatrix},\boldsymbol{c}=\begin{pmatrix}0\\0\\1\end{pmatrix} H= 220240002 ,A=(121111),b=(42),c= 001
下列代码利用这些数据进行计算。

import numpy as np					#导入numpy
from fractions import Fraction as F	#设置输出格式
np.set_printoptions(formatter={'all':lambda x:str(F(x).limit_denominator())})
H = np.array([[2, -2, 0],			#矩阵H[-2, 4, 0],[0, 0, 2]])
A = np.array([[1, 1, 1],			#矩阵A[2, -1, 1]])
b = np.array([4, 2])				#向量b
c = np.array([0, 0, 1])				#向量c
print(qlag(H, A, b, c))				#计算最优解

程序的第2~4行设置数组输出格式为有理数。5~11设置表示本二次规划问题的矩阵H、A和向量b、c。第12行调用函数qlag,计算本二次规划最优解。运行程序,输出

(array([21/11, 43/22, 3/22]), array([29/11, -15/11]))

意味着最优解 x 0 = ( 21 11 43 22 3 22 ) \boldsymbol{x}_0=\begin{pmatrix}\frac{21}{11}\\\frac{43}{22}\\\frac{3}{22}\end{pmatrix} x0= 11212243223 ,对应的拉格朗日乘子 λ 0 = ( 29 11 − 15 11 ) \boldsymbol{\lambda}_0=\begin{pmatrix}\frac{29}{11}\\-\frac{15}{11}\end{pmatrix} λ0=(11291115)
写博不易,敬请支持:
如果阅读本文于您有所获,敬请点赞、评论、收藏,谢谢大家的支持!

这篇关于最优化方法Python计算:二次规划的拉格朗日算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1138430

相关文章

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

JavaScript中的高级调试方法全攻略指南

《JavaScript中的高级调试方法全攻略指南》什么是高级JavaScript调试技巧,它比console.log有何优势,如何使用断点调试定位问题,通过本文,我们将深入解答这些问题,带您从理论到实... 目录观点与案例结合观点1观点2观点3观点4观点5高级调试技巧详解实战案例断点调试:定位变量错误性能分

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法

《JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法》:本文主要介绍JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法,每种方法结合实例代码给大家介绍的非常... 目录引言:为什么"相等"判断如此重要?方法1:使用some()+includes()(适合小数组)方法2