最优化方法Python计算:二次规划的拉格朗日算法

2024-09-05 08:20

本文主要是介绍最优化方法Python计算:二次规划的拉格朗日算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目标函数为二次式,约束条件为线性式的最优化问题称为二次规划。其一般形式为
{ minimize 1 2 x ⊤ H x + c ⊤ x s.t.   A e q x − b e q = o A i q x − b i q ≥ o . \begin{cases} \text{minimize}\quad \frac{1}{2}\boldsymbol{x}^\top\boldsymbol{Hx}+\boldsymbol{c}^\top\boldsymbol{x}\\ \text{s.t.\ \ }\quad\quad\quad\boldsymbol{A}_{eq}\boldsymbol{x}-\boldsymbol{b}_{eq}=\boldsymbol{o}\\ \quad\quad\quad\quad\quad\boldsymbol{A}_{iq}\boldsymbol{x}-\boldsymbol{b}_{iq}\geq\boldsymbol{o} \end{cases}. minimize21xHx+cxs.t.  Aeqxbeq=oAiqxbiqo.
其中, H ∈ R n × n \boldsymbol{H}\in\text{R}^{n\times n} HRn×n对称, c ∈ R n \boldsymbol{c}\in\text{R}^n cRn A e q ∈ R l × n \boldsymbol{A}_{eq}\in\text{R}^{l\times n} AeqRl×n b e q ∈ R l \boldsymbol{b}_{eq}\in\text{R}^l beqRl A i q ∈ R m × n \boldsymbol{A}_{iq}\in\text{R}^{m\times n} AiqRm×n b i q ∈ R m \boldsymbol{b}_{iq}\in\text{R}^m biqRm
仅含等式约束的二次规划形如
{ minimize 1 2 x ⊤ H x + c ⊤ x s.t.   A x − b = o . ( 1 ) \begin{cases} \text{minimize}\quad \frac{1}{2}\boldsymbol{x}^\top\boldsymbol{Hx}+\boldsymbol{c}^\top\boldsymbol{x}\\ \text{s.t.\ \ }\quad\quad\quad\boldsymbol{Ax}-\boldsymbol{b}=\boldsymbol{o} \end{cases}.\quad\quad(1) {minimize21xHx+cxs.t.  Axb=o.(1)
假定 H \boldsymbol{H} H对称正定, A ∈ R l × n \boldsymbol{A}\in\text{R}^{l\times n} ARl×n,rank A = l \boldsymbol{A}=l A=l。正定二次式 1 2 x ⊤ H x + c ⊤ x \frac{1}{2}\boldsymbol{x}^\top\boldsymbol{Hx}+\boldsymbol{c}^\top\boldsymbol{x} 21xHx+cx在凸集 Ω = { x ∣ A x − b = o } \Omega=\{\boldsymbol{x}|\boldsymbol{Ax}-\boldsymbol{b}=\boldsymbol{o}\} Ω={xAxb=o}上有唯一满足必要条件的KKT点 ( x 0 λ 0 ) \begin{pmatrix}\boldsymbol{x}_0\\\boldsymbol{\lambda}_0\end{pmatrix} (x0λ0)。为算得该KKT点,写出问题的拉格朗日函数
L ( x , λ ) = 1 2 x ⊤ H x + c ⊤ x − λ ⊤ ( A x − b ) . L(\boldsymbol{x},\boldsymbol{\lambda})=\frac{1}{2}\boldsymbol{x}^\top\boldsymbol{Hx}+\boldsymbol{c}^\top\boldsymbol{x}-\boldsymbol{\lambda}^\top(\boldsymbol{Ax}-\boldsymbol{b}). L(x,λ)=21xHx+cxλ(Axb).
关于 x \boldsymbol{x} x λ \boldsymbol{\lambda} λ的梯度为
∇ x L ( x , λ ) = H x + c − A ⊤ λ ∇ λ L ( x , λ ) = − A x + b \begin{array}{l} \nabla_{\boldsymbol{x}}L(\boldsymbol{x},\boldsymbol{\lambda})=\boldsymbol{Hx}+\boldsymbol{c}-\boldsymbol{A}^\top\boldsymbol{\lambda}\\ \nabla_{\boldsymbol{\lambda}}L(\boldsymbol{x},\boldsymbol{\lambda})=-\boldsymbol{Ax}+\boldsymbol{b} \end{array} xL(x,λ)=Hx+cAλλL(x,λ)=Ax+b
∇ x L ( x , λ ) = o \nabla_{\boldsymbol{x}}L(\boldsymbol{x},\boldsymbol{\lambda})=\boldsymbol{o} xL(x,λ)=o ∇ λ L ( x , λ ) = o \nabla_{\boldsymbol{\lambda}}L(\boldsymbol{x},\boldsymbol{\lambda})=\boldsymbol{o} λL(x,λ)=o,得线性方程组
{ H x + c − A ⊤ λ = o − A x + b = o , \begin{cases} \boldsymbol{Hx}+\boldsymbol{c}-\boldsymbol{A}^\top\boldsymbol{\lambda}=\boldsymbol{o}\\ -\boldsymbol{Ax}+\boldsymbol{b}=\boldsymbol{o} \end{cases}, {Hx+cAλ=oAx+b=o,
等价地表示为
( H − A ⊤ − A O ) ( x λ ) = ( − c − b ) . \begin{pmatrix}\boldsymbol{H}&-\boldsymbol{A}^\top\\-\boldsymbol{A}&\boldsymbol{O}\end{pmatrix}\begin{pmatrix}\boldsymbol{x}\\\boldsymbol{\lambda}\end{pmatrix} =\begin{pmatrix}-\boldsymbol{c}\\-\boldsymbol{b}\end{pmatrix}. (HAAO)(xλ)=(cb).
系数矩阵 ( H − A ⊤ − A O ) \begin{pmatrix}\boldsymbol{H}&-\boldsymbol{A}^\top\\-\boldsymbol{A}&\boldsymbol{O}\end{pmatrix} (HAAO)称为拉格朗日矩阵。由 H \boldsymbol{H} H对称正定且rank A = l \boldsymbol{A}=l A=l的假设,拉格朗日矩阵可逆,设
( H − A ⊤ − A O ) − 1 = ( Q − R ⊤ − R S ) , \begin{pmatrix}\boldsymbol{H}&-\boldsymbol{A}^\top\\-\boldsymbol{A}&\boldsymbol{O}\end{pmatrix}^{-1}=\begin{pmatrix}\boldsymbol{Q}&-\boldsymbol{R}^\top\\-\boldsymbol{R}&\boldsymbol{S}\end{pmatrix}, (HAAO)1=(QRRS),
根据
( H − A ⊤ − A O ) ( Q − R ⊤ − R S ) = I \begin{pmatrix}\boldsymbol{H}&-\boldsymbol{A}^\top\\-\boldsymbol{A}&\boldsymbol{O}\end{pmatrix}\begin{pmatrix}\boldsymbol{Q}&-\boldsymbol{R}^\top\\-\boldsymbol{R}&\boldsymbol{S}\end{pmatrix}=\boldsymbol{I} (HAAO)(QRRS)=I
算得
{ H Q + A ⊤ R = I − H R ⊤ − A ⊤ S = O − A Q = O A R ⊤ = I \begin{cases} \boldsymbol{HQ}+\boldsymbol{A}^\top\boldsymbol{R}=\boldsymbol{I}\\ -\boldsymbol{H}\boldsymbol{R}^\top-\boldsymbol{A}^\top\boldsymbol{S}=\boldsymbol{O}\\ -\boldsymbol{AQ}=\boldsymbol{O}\\ \boldsymbol{AR}^\top=\boldsymbol{I} \end{cases} HQ+AR=IHRAS=OAQ=OAR=I
由于 A \boldsymbol{A} A行满秩,故 A H − 1 A ⊤ \boldsymbol{AH}^{-1}\boldsymbol{A}^\top AH1A可逆。 ( A H − 1 A ⊤ ) − 1 A H − 1 (\boldsymbol{AH}^{-1}\boldsymbol{A}^\top)^{-1}\boldsymbol{AH}^{-1} (AH1A)1AH1 A ⊤ \boldsymbol{A}^\top A的伪逆。解上列连立式得
{ S = − ( A H − 1 A ⊤ ) − 1 R = − S A H − 1 Q = H − 1 − H − 1 A ⊤ R \begin{cases}\boldsymbol{S}=-(\boldsymbol{AH}^{-1}\boldsymbol{A}^\top)^{-1}\\\boldsymbol{R}=-\boldsymbol{SAH}^{-1}\\\boldsymbol{Q}=\boldsymbol{H}^{-1}-\boldsymbol{H}^{-1}\boldsymbol{A}^\top\boldsymbol{R}\end{cases} S=(AH1A)1R=SAH1Q=H1H1AR
于是,二次规划(1)的KKT点
( x 0 λ 0 ) = ( Q − R ⊤ − R S ) ( − c − b ) = ( − Q c + R ⊤ b R c − S b ) . \begin{pmatrix}\boldsymbol{x}_0\\\boldsymbol{\lambda}_0\end{pmatrix}=\begin{pmatrix}\boldsymbol{Q}&-\boldsymbol{R}^\top\\-\boldsymbol{R}&\boldsymbol{S}\end{pmatrix}\begin{pmatrix}-\boldsymbol{c}\\-\boldsymbol{b}\end{pmatrix}=\begin{pmatrix}-\boldsymbol{Qc}+\boldsymbol{R}^\top\boldsymbol{b}\\\boldsymbol{Rc}-\boldsymbol{Sb} \end{pmatrix}. (x0λ0)=(QRRS)(cb)=(Qc+RbRcSb).
下列代码实现求解等式约束二次规划(1)的拉格朗日算法。

import numpy as np										#导入numpy
def qlag(H, A, b, c):H1 = np.linalg.inv(H)								#H的逆阵S = -np.linalg.inv(np.matmul(np.matmul(A, H1), A.T))R = -np.matmul(np.matmul(S, A), H1)Q = H1 - np.matmul(np.matmul(H1, A.T), R)x0 = -np.matmul(Q, c) + np.matmul(R.T, b)			#最优解lamd0 = np.matmul(R, c) - np.matmul(S, b)			#拉格朗日乘子return x0, lamd0

程序的第2~9行定义的函数qlag实现拉格朗日算法。qlag的4个参数H,A,b和c分别表示二次规划(1)中的正定矩阵 H \boldsymbol{H} H,行满秩阵 A \boldsymbol{A} A,向量 b \boldsymbol{b} b c \boldsymbol{c} c
函数体内的第3行调用numpy.linalg的inv函数计算 H \boldsymbol{H} H的逆阵 H − 1 \boldsymbol{H}^{-1} H1,赋予H1。第4~6行分别计算
S = − ( A H − 1 A ⊤ ) − 1 R = − S A H − 1 Q = H − 1 − H − 1 A ⊤ R \begin{array}{l} \boldsymbol{S}=-(\boldsymbol{AH}^{-1}\boldsymbol{A}^\top)^{-1}\\ \boldsymbol{R}=-\boldsymbol{SAH}^{-1}\\ \boldsymbol{Q}=\boldsymbol{H}^{-1}-\boldsymbol{H}^{-1}\boldsymbol{A}^\top\boldsymbol{R} \end{array} S=(AH1A)1R=SAH1Q=H1H1AR
并赋予S,R和Q。第7、8行分别计算最优解和对应的拉格朗日乘子
x 0 = − Q c + R ⊤ b λ 0 = R c − S b \begin{array}{l} \boldsymbol{x}_0=-\boldsymbol{Qc}+\boldsymbol{R}^\top\boldsymbol{b}\\ \boldsymbol{\lambda}_0=\boldsymbol{Rc}-\boldsymbol{Sb} \end{array} x0=Qc+Rbλ0=RcSb
并赋予x0和lamd0。
例1用qlag函数求解下列二次规划
{ minimize x 1 2 + 2 x 2 2 + x 3 2 − 2 x 1 x 2 + x 3 s.t.   x 1 + x 2 + x 3 = 4 2 x 1 − x 2 + x 3 = 2 . \begin{cases} \text{minimize}\quad x_1^2+2x_2^2+x_3^2-2x_1x_2+x_3\\ \text{s.t.\ \ }\quad\quad\quad x_1+x_2+x_3=4\\ \quad\quad\quad\quad\quad 2x_1-x_2+x_3=2 \end{cases}. minimizex12+2x22+x322x1x2+x3s.t.  x1+x2+x3=42x1x2+x3=2.
:本问题中,
H = ( 2 − 2 0 − 2 4 0 0 0 2 ) , A = ( 1 1 1 2 − 1 1 ) , b = ( 4 2 ) , c = ( 0 0 1 ) \boldsymbol{H}=\begin{pmatrix}2&-2&0\\-2&4&0\\0&0&2\end{pmatrix},\boldsymbol{A}=\begin{pmatrix}1&1&1\\2&-1&1\end{pmatrix},\boldsymbol{b}=\begin{pmatrix}4\\2\end{pmatrix},\boldsymbol{c}=\begin{pmatrix}0\\0\\1\end{pmatrix} H= 220240002 ,A=(121111),b=(42),c= 001
下列代码利用这些数据进行计算。

import numpy as np					#导入numpy
from fractions import Fraction as F	#设置输出格式
np.set_printoptions(formatter={'all':lambda x:str(F(x).limit_denominator())})
H = np.array([[2, -2, 0],			#矩阵H[-2, 4, 0],[0, 0, 2]])
A = np.array([[1, 1, 1],			#矩阵A[2, -1, 1]])
b = np.array([4, 2])				#向量b
c = np.array([0, 0, 1])				#向量c
print(qlag(H, A, b, c))				#计算最优解

程序的第2~4行设置数组输出格式为有理数。5~11设置表示本二次规划问题的矩阵H、A和向量b、c。第12行调用函数qlag,计算本二次规划最优解。运行程序,输出

(array([21/11, 43/22, 3/22]), array([29/11, -15/11]))

意味着最优解 x 0 = ( 21 11 43 22 3 22 ) \boldsymbol{x}_0=\begin{pmatrix}\frac{21}{11}\\\frac{43}{22}\\\frac{3}{22}\end{pmatrix} x0= 11212243223 ,对应的拉格朗日乘子 λ 0 = ( 29 11 − 15 11 ) \boldsymbol{\lambda}_0=\begin{pmatrix}\frac{29}{11}\\-\frac{15}{11}\end{pmatrix} λ0=(11291115)
写博不易,敬请支持:
如果阅读本文于您有所获,敬请点赞、评论、收藏,谢谢大家的支持!

这篇关于最优化方法Python计算:二次规划的拉格朗日算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1138430

相关文章

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

Java中Switch Case多个条件处理方法举例

《Java中SwitchCase多个条件处理方法举例》Java中switch语句用于根据变量值执行不同代码块,适用于多个条件的处理,:本文主要介绍Java中SwitchCase多个条件处理的相... 目录前言基本语法处理多个条件示例1:合并相同代码的多个case示例2:通过字符串合并多个case进阶用法使用

一文带你搞懂Python中__init__.py到底是什么

《一文带你搞懂Python中__init__.py到底是什么》朋友们,今天我们来聊聊Python里一个低调却至关重要的文件——__init__.py,有些人可能听说过它是“包的标志”,也有人觉得它“没... 目录先搞懂 python 模块(module)Python 包(package)是啥?那么 __in

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

html5的响应式布局的方法示例详解

《html5的响应式布局的方法示例详解》:本文主要介绍了HTML5中使用媒体查询和Flexbox进行响应式布局的方法,简要介绍了CSSGrid布局的基础知识和如何实现自动换行的网格布局,详细内容请阅读本文,希望能对你有所帮助... 一 使用媒体查询响应式布局        使用的参数@media这是常用的

Python实现特殊字符判断并去掉非字母和数字的特殊字符

《Python实现特殊字符判断并去掉非字母和数字的特殊字符》在Python中,可以通过多种方法来判断字符串中是否包含非字母、数字的特殊字符,并将这些特殊字符去掉,本文为大家整理了一些常用的,希望对大家... 目录1. 使用正则表达式判断字符串中是否包含特殊字符去掉字符串中的特殊字符2. 使用 str.isa

Spring 基于XML配置 bean管理 Bean-IOC的方法

《Spring基于XML配置bean管理Bean-IOC的方法》:本文主要介绍Spring基于XML配置bean管理Bean-IOC的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一... 目录一. spring学习的核心内容二. 基于 XML 配置 bean1. 通过类型来获取 bean2. 通过

python中各种常见文件的读写操作与类型转换详细指南

《python中各种常见文件的读写操作与类型转换详细指南》这篇文章主要为大家详细介绍了python中各种常见文件(txt,xls,csv,sql,二进制文件)的读写操作与类型转换,感兴趣的小伙伴可以跟... 目录1.文件txt读写标准用法1.1写入文件1.2读取文件2. 二进制文件读取3. 大文件读取3.1

使用Python实现一个优雅的异步定时器

《使用Python实现一个优雅的异步定时器》在Python中实现定时器功能是一个常见需求,尤其是在需要周期性执行任务的场景下,本文给大家介绍了基于asyncio和threading模块,可扩展的异步定... 目录需求背景代码1. 单例事件循环的实现2. 事件循环的运行与关闭3. 定时器核心逻辑4. 启动与停