用opencv的traincascade.exe训练行人的HAAR、LBP和HOG特征的xml文件,并对分类器进行加载和检测

本文主要是介绍用opencv的traincascade.exe训练行人的HAAR、LBP和HOG特征的xml文件,并对分类器进行加载和检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

看到一篇论文上讲到可以用adaboost分类器进行行人检测,就想自己动手训练一下分类器,折腾了两周终于训练成功了。。。

opencv中有两个函数可以训练分类器opencv_haartraining.exe和opencv_traincascade.exe,前者只能训练haar特征,后者可以用HAAR、LBP和HOG特征训练分类器。这两个函数都可以在opencv\build\x86\vc10\bin文件夹下找到,opencv_haartraining.exe训练的adaboost级联分类器有很多了,本文主要讲opencv_haartraining.exe训练的LBP和HOG特征的分类器。

训练的过程包过四步:

首先是样本的准备、其次是对样本进行处理、再次生成样本描述文件、最后一步是训练分类器。

1、样本的准备

以行人训练为例,首先正样本是各种各样的行人的照片,负样本就是非人照片。样本个数最好在上千个,个数太少训练出来的分类器不能准确的检测行人,网上对正负样本的个数比例不尽相同,有的说3:1有的说7:3,具体的还是要自己去实验,我用的正样本有2000个负样本1200个。把正负样本分别放在不同的文件夹下,可以命名为pos、neg。同时也要把opencv自带的训练函数和正负样本一起放到一个文件夹下,例如放到E盘的boost文件夹下。如图这样就准备好了正负样本了。

ps:对正负样本的几点说明。。。

正负样本都要转化成灰度图,而且对于正样本用haar特征训练是规格化成20*20或其他大小,最好不要太大,过多的haar特征会影响分类器的训练时间;对于LBP特征正样本要规格化为24*24大小,而对于HOG要规格化成64*64. 负样本对尺寸没有统一要求,在训练对应的分类器时,选择的负样本尺寸一定要大于等于正样本规定的尺寸。                   a,正样本就是人的图片就行了,尽量包含少的背景。     b,负样本有两点要求:一,不能包含正样本且尽可能多的提供场景的背景图;二,负样本尽可能的多,而且要多样化,和正样本有一定的差距但是差别也不要太大,否则容易在第一级就全部被分类器reject,训练时不能显示负样本的个数,从而导致卡死。

2、对样本进行处理

以下的处理过程都是在命令行下进行的,在计算机【开始】里面输入“cmd”就可以进入命令行了。。。。。。

然后进入你刚才新建的包含以上样本的文件夹下  首先进入E盘 直接输入E:就可以了,其次输入“cd boost”就可以进入刚才的文件夹下。输入“CD..”可以返回上一程

输入dir /b >pos.txt 可以在pos文件夹下生成正样本描述文件,文件是txt文件,包含的内容是正样本中图片的对应序号和格式。把其中的格式jpg改成jpg 1 0 0 24 24

后面的0 0 24 24是你规格化图片的大小,即矩形框的大小,和你自己规格化的正样本图片大小要保持一致。全部替换以后,再把最后一行的pos.txt删除就可以了。对于负样本,以上生成方式一样,不需要对txt文件的图片格式进行修改,只需要删除最后一行的neg.txt即可。这样正负样本就处理好了。。。

3、生成样本描述文件

对正负样本进行以上预处理之后,就可以创建正样本vec文件了。

命令行进入opencv_createsamples.exe文件夹下,依次输入:opencv_createsamples.exe -info pos\pos.txt -vec pos.vec -bg neg\neg.txt -num 2000 -w 24 -h 24 回车之后文件夹下就会出现pos.vec文件。


以上参数的含义如下:
-vec <vec_file_name>:训练好的正样本的输出文件名。
-img<image_file_name>:源目标图片(例如:一个公司图标)
-bg<background_file_name>:背景描述文件。
-num<number_of_samples>:要产生的正样本的数量,和正样本图片数目相同。
-bgcolor<background_color>:背景色(假定当前图片为灰度图)。背景色制定了透明色。对于压缩图片,颜色方差量由bgthresh参数来指定。则在bgcolor-bgthresh 和bgcolor+bgthresh 中间的像素被认为是透明的。
-bgthresh<background_color_threshold>

-inv:如果指定,颜色会反色
-randinv:如果指定,颜色会任意反色
-maxidev<max_intensity_deviation>:背景色最大的偏离度。
-maxangel<max_x_rotation_angle>,
-maxangle<max_y_rotation_angle>,
-maxzangle<max_x_rotation_angle>:最大旋转角度,以弧度为单位。
-show:如果指定,每个样本会被显示出来,按下"esc"会关闭这一开关,即不显示样本图片,而创建过程
继续。这是个有用的debug 选项。
-w<sample_width>:输出样本的宽度(以像素为单位)
-h<sample_height>:输出样本的高度(以像素为单位)

只需要对正样本进行以上操作,负样本不需要生成vec文件。。。

4、训练分类器

在以上准备工作都做好的情况下,就可以进行训练分类器了。

在cmd命令行下输入:opencv_traincascade.exe -data xml -vec pos.vec -bg neg\neg.txt -numpos 1800 -numneg 1200 -numstages 20 -featureType LBP -w 24 -h 24

按enter就可以进入训练阶段了。

opencv_traincascade.exe的命令行参数解释如下:

通用参数:

-data <cascade_dir_name>:目录用于保存训练产生的分类器xml文件和中间文件(对于上面的LBP_classifier),如不存在训练程序会创建它;

-vec <vec_file_name>:由 opencv_createsamples 程序生成的包含正样本的vec文件名(对应上面的pos_24_24.vec);

-bg <background_file_name>:背景描述文件,也就是包含负样本文件名的那个描述文件(对应上面的neg\neg.txt);

-numPos <number_of_positive_samples>:每级分类器训练时所用的正样本数目(默认值为2000);
-numNeg <number_of_negative_samples>:每级分类器训练时所用的负样本数目,可以大于 -bg 指定的图片数目(默认值为1000);

-numStages <number_of_stages>:训练的分类器的级数(默认值为20级);

-precalcValBufSize <precalculated_vals_buffer_size_in_Mb>:缓存大小,用于存储预先计算的特征值(feature values),单位为MB(默认值为256);
-precalcIdxBufSize <precalculated_idxs_buffer_size_in_Mb>:缓存大小,用于存储预先计算的特征索引(feature indices),单位为MB(默认值为256);

内存越大,训练时间越短。
-baseFormatSave:这个参数仅在使用Haar特征时有效。如果指定这个参数,那么级联分类器将以老的格式存储(默认不指定该参数项,此时其值为false;一旦指定则其值默认为true);

级联参数:CvCascadeParams类,定义于cascadeclassifier.h
-stageType <BOOST(default)>:级别(stage)参数。目前只支持将BOOST分类器作为级联的类型;
-featureType<{HAAR(default), LBP}>:特征的类型: HAAR - 类Haar特征; LBP - 局部纹理模式特征(默认Harr);
-w <sampleWidth>:训练样本的宽(单位为像素,默认24);
-h <sampleHeight>:训练样本的高(单位为像素,默认24);
训练样本的尺寸必须跟训练样本创建(使用 opencv_createsamples 程序创建)时的尺寸保持一致。

Boosted分类器参数:CvCascadeBoostParams类,定义于boost.h
-bt <{DAB, RAB, LB, GAB(default)}>:Boosted分类器的类型(DAB - Discrete AdaBoost, RAB - Real AdaBoost, LB - LogitBoost, GAB - Gentle AdaBoost为默认);
-minHitRate <min_hit_rate>:分类器的每一级希望得到的最小检测率(默认值为0.995),总的检测率大约为 min_hit_rate^number_of_stages;
-maxFalseAlarmRate <max_false_alarm_rate>:分类器的每一级希望得到的最大误检率(默认值为0.5),总的误检率大约为 max_false_alarm_rate^number_of_stages;
-weightTrimRate <weight_trim_rate>:Specifies whether trimming should be used and its weight,一个还不错的数值是0.95;
-maxDepth <max_depth_of_weak_tree>:弱分类器树最大的深度。一个还不错的数值是1,是二叉树(stumps);
-maxWeakCount <max_weak_tree_count>:每一级中的弱分类器的最大数目(默认值为100)。The boosted classifier (stage) will have so many weak trees (<=maxWeakCount), as needed to achieve the given -maxFalseAlarmRate;

其中训练出来的某一级的结果如下:


等到分类器训练到你自己设定的级数 就完成了。最后得到的cascad.xml就是我们需要的结果。


好了,到这里自己的分类器就训练完成了,下面就可以用得到的xml文件进行检测了。


这篇关于用opencv的traincascade.exe训练行人的HAAR、LBP和HOG特征的xml文件,并对分类器进行加载和检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1138213

相关文章

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

业务中14个需要进行A/B测试的时刻[信息图]

在本指南中,我们将全面了解有关 A/B测试 的所有内容。 我们将介绍不同类型的A/B测试,如何有效地规划和启动测试,如何评估测试是否成功,您应该关注哪些指标,多年来我们发现的常见错误等等。 什么是A/B测试? A/B测试(有时称为“分割测试”)是一种实验类型,其中您创建两种或多种内容变体——如登录页面、电子邮件或广告——并将它们显示给不同的受众群体,以查看哪一种效果最好。 本质上,A/B测

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

Flutter 进阶:绘制加载动画

绘制加载动画:由小圆组成的大圆 1. 定义 LoadingScreen 类2. 实现 _LoadingScreenState 类3. 定义 LoadingPainter 类4. 总结 实现加载动画 我们需要定义两个类:LoadingScreen 和 LoadingPainter。LoadingScreen 负责控制动画的状态,而 LoadingPainter 则负责绘制动画。

基于 YOLOv5 的积水检测系统:打造高效智能的智慧城市应用

在城市发展中,积水问题日益严重,特别是在大雨过后,积水往往会影响交通甚至威胁人们的安全。通过现代计算机视觉技术,我们能够智能化地检测和识别积水区域,减少潜在危险。本文将介绍如何使用 YOLOv5 和 PyQt5 搭建一个积水检测系统,结合深度学习和直观的图形界面,为用户提供高效的解决方案。 源码地址: PyQt5+YoloV5 实现积水检测系统 预览: 项目背景

opencv 滚动条

参数介绍:createTrackbar( trackbarname , "hello" , &alpha_slider ,alpha_max ,  on_trackbar )  ;在标签中显示的文字(提示滑动条的用途) TrackbarName创建的滑动条要放置窗体的名字 “hello”滑动条的取值范围从 0 到 alpha_max (最小值只能为 zero).滑动后的值存放在

android-opencv-jni

//------------------start opencv--------------------@Override public void onResume(){ super.onResume(); //通过OpenCV引擎服务加载并初始化OpenCV类库,所谓OpenCV引擎服务即是 //OpenCV_2.4.3.2_Manager_2.4_*.apk程序包,存

JavaFX应用更新检测功能(在线自动更新方案)

JavaFX开发的桌面应用属于C端,一般来说需要版本检测和自动更新功能,这里记录一下一种版本检测和自动更新的方法。 1. 整体方案 JavaFX.应用版本检测、自动更新主要涉及一下步骤: 读取本地应用版本拉取远程版本并比较两个版本如果需要升级,那么拉取更新历史弹出升级控制窗口用户选择升级时,拉取升级包解压,重启应用用户选择忽略时,本地版本标志为忽略版本用户选择取消时,隐藏升级控制窗口 2.