InstantX团队新作!基于端到端训练的风格转换模型CSGO

2024-09-05 02:12

本文主要是介绍InstantX团队新作!基于端到端训练的风格转换模型CSGO,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

由InstantX团队、南京理工大学、北京航空航天大学以及北京大学联合提出了一种基于端到端训练的风格转换模型 CSGO,它采用独立的特征注入明确地解耦内容和风格特征。统一的 CSGO 实现了图像驱动的风格转换、文本驱动的风格化合成和文本编辑驱动的风格化合成。大量实验证明了该方法在增强图像生成中的风格控制能力方面的有效性。

CSGO 实现了高质量的(1)图像(草图和自然)驱动的风格转换、(2)文本驱动的风格化合成和(3)文本编辑驱动的风格化合成。

相关链接

项目主页-https://csgo-gen.github.io/

代码链接-https://github.com/instantX-research/CSGO

论文链接-https://arxiv.org/pdf/2408.16766

论文阅读

CSGO:文本到图像生成中的内容样式组合

摘要

扩散模型在受控图像生成中表现出卓越的能力,这进一步激发了人们对图像风格转换的兴趣。由于特定数据的稀缺,现有的工作主要集中于训练基于自由的方法(例如,图像反转)。

在本研究中,我们提出了一种用于内容-风格-风格化图像三元组的数据构建管道,可生成并自动清理风格化的数据三元组。基于此管道,我们构建了一个数据集 IMAGStyle,这是第一个包含 210k 个图像三元组的大规模风格转换数据集,可供社区探索和研究。

借助 IMAGStyle,我们提出了基于端到端训练的风格转换模型 CSGO,它采用独立的特征注入明确地解耦内容和风格特征。统一的 CSGO 实现了图像驱动的风格转换、文本驱动的风格化合成和文本编辑驱动的风格化合成。大量实验证明了我们的方法在增强图像生成中的风格控制能力方面的有效性。

方法

给定任何内容图像 C 和风格图像 S,CSGO 旨在通过将一个图像的内容与另一个图像的风格相结合来生成可信的目标图像,确保目标图像在采用所需风格的同时保持原始内容的语义。下图概述了我们的方法。它由两个关键组件组成:

  • 用于提取内容信息的内容控制,通过 Controlnet 和解耦的交叉注意模块注入基础模型;

  • 用于提取风格信息的风格控制,分别使用解耦的交叉注意模块注入 Controlnet 和基础模型。

我们与之前的研究有以下不同之处:

  1. CSGO 是一个基于端到端训练的模型,推理时无需微调。

  2. 我们不训练 UNet,因此可以保留原始文本到图像模型的生成能力。

  3. 我们的方法统一了图像驱动的风格转换、文本驱动的风格合成和文本编辑驱动的风格合成。

实验

文本到图像生成中的内容样式组合

内容和风格图像之间的循环翻译

文本到图像生成中的风格转换

文本驱动的图像编辑

结论

我们首先提出了一个用于构建内容-风格-风格化图像三元组的流水线。基于此流水线,我们构建了第一个大规模风格转换数据集 IMAGStyle,其中包含 210K 个图像三元组,涵盖了广泛的风格场景。为了验证 IMAGStyle 对风格转换的影响,我们提出了 CSGO,这是一个简单但高效的端到端训练风格转换框架,并且我们验证了所提出的 CSGO 可以在统一的框架中同时执行图像风格转换、文本驱动的风格合成和文本编辑驱动的风格合成任务。大量实验验证了 IMAGStyle 和 CSGO 对风格转换的有益效果。我们希望我们的工作能够激励研究界进一步探索风格化研究。

未来的工作。 虽然提出的数据集和框架实现了非常先进的性能,但仍有改进的空间。由于时间和计算资源的限制,我们仅构建了 210K 数据三元组。我们相信,通过扩大数据集的大小,CSGO 的风格迁移质量将会更好。同时,提出的 CSGO 框架是一个基础版本,仅验证了生成风格化数据集对风格迁移的有益影响。我们相信,通过优化风格和内容特征提取和融合方法,可以进一步提高风格迁移的质量。

这篇关于InstantX团队新作!基于端到端训练的风格转换模型CSGO的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1137675

相关文章

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

Java数字转换工具类NumberUtil的使用

《Java数字转换工具类NumberUtil的使用》NumberUtil是一个功能强大的Java工具类,用于处理数字的各种操作,包括数值运算、格式化、随机数生成和数值判断,下面就来介绍一下Number... 目录一、NumberUtil类概述二、主要功能介绍1. 数值运算2. 格式化3. 数值判断4. 随机

C语言中自动与强制转换全解析

《C语言中自动与强制转换全解析》在编写C程序时,类型转换是确保数据正确性和一致性的关键环节,无论是隐式转换还是显式转换,都各有特点和应用场景,本文将详细探讨C语言中的类型转换机制,帮助您更好地理解并在... 目录类型转换的重要性自动类型转换(隐式转换)强制类型转换(显式转换)常见错误与注意事项总结与建议类型

如何在本地部署 DeepSeek Janus Pro 文生图大模型

《如何在本地部署DeepSeekJanusPro文生图大模型》DeepSeekJanusPro模型在本地成功部署,支持图片理解和文生图功能,通过Gradio界面进行交互,展示了其强大的多模态处... 目录什么是 Janus Pro1. 安装 conda2. 创建 python 虚拟环境3. 克隆 janus

Python实现视频转换为音频的方法详解

《Python实现视频转换为音频的方法详解》这篇文章主要为大家详细Python如何将视频转换为音频并将音频文件保存到特定文件夹下,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. python需求的任务2. Python代码的实现3. 代码修改的位置4. 运行结果5. 注意事项

本地私有化部署DeepSeek模型的详细教程

《本地私有化部署DeepSeek模型的详细教程》DeepSeek模型是一种强大的语言模型,本地私有化部署可以让用户在自己的环境中安全、高效地使用该模型,避免数据传输到外部带来的安全风险,同时也能根据自... 目录一、引言二、环境准备(一)硬件要求(二)软件要求(三)创建虚拟环境三、安装依赖库四、获取 Dee

使用Python实现图片和base64转换工具

《使用Python实现图片和base64转换工具》这篇文章主要为大家详细介绍了如何使用Python中的base64模块编写一个工具,可以实现图片和Base64编码之间的转换,感兴趣的小伙伴可以了解下... 简介使用python的base64模块来实现图片和Base64编码之间的转换。可以将图片转换为Bas

DeepSeek模型本地部署的详细教程

《DeepSeek模型本地部署的详细教程》DeepSeek作为一款开源且性能强大的大语言模型,提供了灵活的本地部署方案,让用户能够在本地环境中高效运行模型,同时保护数据隐私,在本地成功部署DeepSe... 目录一、环境准备(一)硬件需求(二)软件依赖二、安装Ollama三、下载并部署DeepSeek模型选