C++笔记17•数据结构:二叉搜索树(K模型/KV模型实现)•

2024-09-04 23:04

本文主要是介绍C++笔记17•数据结构:二叉搜索树(K模型/KV模型实现)•,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

二叉搜索树

1.二叉搜索树

1. 二叉搜索树的查找
a 、从根开始比较,查找,比根大则往右边走查找,比根小则往左边走查找。
b 、最多查找高度次,走到到空,还没找到,这个值不存在。
2. 二叉搜索树的插入
插入的具体过程如下:
a. 树为空,则直接新增节点,赋值给 root 指针
b. 树不空,按二叉搜索树性质查找插入位置,插入新节点
3.二叉搜索树的删除
首先查找元素是否在二叉搜索树中,如果不存在,则返回 , 否则要删除的结点可能分下面四种情 况:
a. 要删除的结点无孩子结点
b. 要删除的结点只有左孩子结点
c. 要删除的结点只有右孩子结点
d. 要删除的结点有左、右孩子结点
看起来有待删除节点有 4 中情况,实际情况 a 可以与情况 b 或者 c 合并起来,因此真正的删除过程如下:
情况 b :删除该结点且使被删除节点的双亲结点指向被删除节点的左孩子结点 -- 直接删除
情况 c :删除该结点且使被删除节点的双亲结点指向被删除结点的右孩子结点 -- 直接删除
情况 d:在它的右子树中寻找中序下的第一个结点( 也就是删除节点的左子树中最大的值或者删除节点的右子树中最小的值 ),用它的值填补到被删除节点 中,再来处理该结点的删除问题 -- 替换法删除

删除9、16、3、10节点

其中:节点9和16可以直接删除。3、10节点需要用替换法删除

节点3:需要用2节点或7节点来替换

节点10:需要用9节点或12节点来替换

 2.二叉搜索树-K模型

#define _CRT_SECURE_NO_WARNINGS 1
#include <iostream>
using namespace std;//二叉搜索树BinarySearchTree
//struct BinarySearchTreeNodetemplate<class K>
struct BSTreeNode
{BSTreeNode<K>* _left;//一定不要写成BSTreeNode*<K>  _left;  这样编译器无法识别BSTreeNode<K>* _right;K _key;BSTreeNode(const K& key):_left(nullptr), _right(nullptr), _key(key){}
};template<class K>
class BSTree
{typedef struct BSTreeNode<K> Node;
public:bool insert(const K& key){if (_root == nullptr){_root = new Node(key);return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_key < key){parent = cur;cur = cur->_right;}else if (cur->_key > key){parent = cur;cur = cur->_left;}else{return false;}}//准备从parent插入Node* node = new Node(key);if (parent->_key > key)//插左子树{parent->_left = node;}else//插右子树{parent->_right = node;}//cur = new Node(key);//if (parent->_key > key)//插左子树//{//	parent->_left = cur;//}//else//插右子树//{//	parent->_right = cur;//}return true;}void _Inorder(Node* root){if (root == nullptr){return;}_Inorder(root->_left);cout << root->_key << " ";_Inorder(root->_right);}void Inorder(){_Inorder(_root);cout << endl;}void find(const K& key){Node* cur = _root;while (cur){if (cur->_key == key){cout << "找到了!" << endl;return;}else if (cur->_key > key){cur = cur->_left;}else if (cur->_key < key){cur = cur->_right;}}cout << "找不到!" << endl;return;}bool erase(const K& key){Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_key > key){parent = cur;cur = cur->_left;}else if (cur->_key < key){parent = cur;cur = cur->_right;}else   //找到了开始删除  1.左为空  2.右为空  3.左右都不为空{if (cur->_left == nullptr) //1.左为空{if (cur == _root) //判断删除的节点是否是根节点 根的左为空 让根的右成为根就可以了 _root = cur->_right{_root = cur->_right;}else{if (parent->_left == cur){parent->_left = cur->_right;}else     //parent->_right == cur{parent->_right = cur->_right;}}delete cur;                   //不要忘记手动释放节点}else if (cur->_right == nullptr)//2.右为空{if (cur == _root)//判断删除的节点是否是根节点 根的右为空 让根的左成为根就可以了 _root = cur->_left{_root = cur->_left;}else{if (parent->_left == cur){parent->_left = cur->_left;}else   //parent->_right == cur{parent->_right = cur->_left;}}delete cur;}else   //3.左右都不为空 用删除节点的左子树中最大的值或者删除节点的右子树中最小的值  此处用删除节点的左子树最大值{//Node* Lbignode_pre = nullptr;//不能置空 后面如果直接跳出循环Lbignode_pre还是空,会出bug;Lbignode_pre->_right  空指针不能这样访问Node* Lbignode_pre = cur;Node* Lbignode = cur->_left;while (Lbignode->_right){Lbignode_pre = Lbignode;Lbignode = Lbignode->_right;}cur->_key = Lbignode->_key;//替换节点中的值,删除cur转换为删除Lbignodeif (Lbignode == Lbignode_pre->_right){Lbignode_pre->_right = Lbignode->_left;}else{Lbignode_pre->_left = Lbignode->_left;}delete Lbignode;}return true;}}return false;}private:Node* _root = nullptr;
};void test1()
{BSTree<int> bt;bt.insert(1);bt.insert(10);bt.insert(2);bt.insert(5);bt.insert(4);bt.insert(6);bt.insert(8);bt.insert(9);bt.insert(7);bt.insert(3);bt.insert(0);bt.insert(0);bt.Inorder();bt.find(8);bt.find(20);bt.erase(20);bt.erase(0);bt.erase(10);bt.erase(8);bt.Inorder();}
void test2()
{char arr[] = { 10,9,8,7,6,5,4,3,2,1,0 };BSTree<int> bt;for (auto e : arr){bt.insert(e);}cout << "插入:" << endl;bt.Inorder();cout << "依次删除:" << endl;for (auto e : arr){bt.erase(e);bt.Inorder();}
}
int main()
{//test1();test2();return 0;}

 3.二叉搜索树-KV模型

#define _CRT_SECURE_NO_WARNINGS 1
#include <iostream>
#include <string>
using namespace std;//二叉搜索树BinarySearchTree
//struct BinarySearchTreeNodetemplate<class K,class V>
struct BSTreeNode
{BSTreeNode<K,V>* _left;//一定不要写成BSTreeNode*<K>  _left;  这样编译器无法识别BSTreeNode<K,V>* _right;K _key;V _value;BSTreeNode(const K& key, const V& value):_left(nullptr), _right(nullptr), _key(key), _value(value){}
};template<class K,class V>
class BSTree
{typedef struct BSTreeNode<K,V> Node;
public:bool insert(const K& key, const V& value){if (_root == nullptr){_root = new Node(key, value);return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_key < key){parent = cur;cur = cur->_right;}else if (cur->_key > key){parent = cur;cur = cur->_left;}else{return false;}}//准备从parent插入Node* node = new Node(key, value);if (parent->_key > key)//插左子树{parent->_left = node;}else//插右子树{parent->_right = node;}//cur = new Node(key, value);//if (parent->_key > key)//插左子树//{//	parent->_left = cur;//}//else//插右子树//{//	parent->_right = cur;//}return true;}void _Inorder(Node* root){if (root == nullptr){return;}_Inorder(root->_left);cout << root->_key << ":"<<root->_value << endl;_Inorder(root->_right);}void Inorder(){_Inorder(_root);cout << endl;}Node* find(const K& key){Node* cur = _root;while (cur){if (cur->_key == key){//cout << "找到了!" << endl;return cur;}else if (cur->_key > key){cur = cur->_left;}else if (cur->_key < key){cur = cur->_right;}}//cout << "找不到!" << endl;return nullptr;}bool erase(const K& key){Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_key > key){parent = cur;cur = cur->_left;}else if (cur->_key < key){parent = cur;cur = cur->_right;}else   //找到了开始删除  1.左为空  2.右为空  3.左右都不为空{if (cur->_left == nullptr) //1.左为空{if (cur == _root) //判断删除的节点是否是根节点 根的左为空 让根的右成为根就可以了 _root = cur->_right{_root = cur->_right;}else{if (parent->_left == cur){parent->_left = cur->_right;}else     //parent->_right == cur{parent->_right = cur->_right;}}delete cur;                   //不要忘记手动释放节点}else if (cur->_right == nullptr)//2.右为空{if (cur == _root)//判断删除的节点是否是根节点 根的右为空 让根的左成为根就可以了 _root = cur->_left{_root = cur->_left;}else{if (parent->_left == cur){parent->_left = cur->_left;}else   //parent->_right == cur{parent->_right = cur->_left;}}delete cur;}else   //3.左右都不为空 用删除节点的左子树中最大的值或者删除节点的右子树中最小的值  此处用删除节点的左子树最大值{//Node* Lbignode_pre = nullptr;不能置空 后面如果直接跳出循环Lbignode_pre还是空,会出bug;Lbignode_pre->_right  空指针不能这样访问Node* Lbignode_pre = cur;Node* Lbignode = cur->_left;while (Lbignode->_right){Lbignode_pre = Lbignode;Lbignode = Lbignode->_right;}cur->_key = Lbignode->_key;//替换节点中的值,删除cur转换为删除Lbignodeif (Lbignode == Lbignode_pre->_right){Lbignode_pre->_right = Lbignode->_left;}else{Lbignode_pre->_left = Lbignode->_left;}delete Lbignode;}return true;}}return false;}private:Node* _root = nullptr;
};void test1()
{BSTree<string,string> Dictionary;Dictionary.insert("apple", "苹果");Dictionary.insert("pear", "梨");Dictionary.insert("left", "左");Dictionary.insert("right", "右");string str;while (cin >> str){BSTreeNode<string, string>* ret = Dictionary.find(str);if(ret)cout << ret->_value << endl;elsecout << "词典没有此单词!" << endl;}}
void test2()
{string arr[] = { "徐香猕猴桃","葡萄", "梨", "哈密瓜", "西瓜", "苹果", "橙子", "苹果", "苹果", "西瓜", "苹果", "香蕉", "苹果", "香蕉"};BSTree<string, int> countfruit;BSTreeNode<string, int>* ret =nullptr;for (auto e : arr){//BSTreeNode<string, int>* ret =countfruit.find(e);ret = countfruit.find(e);if (ret == nullptr)countfruit.insert(e, 1);elseret->_value++;}delete ret;//这里可能会有双重释放节点 ret属于树节点 应在树中析构函数中进行节点的释放的管理,这里一般不需要自己手动释放,自己释放可能会遇到内存泄漏countfruit.Inorder();delete ret;
}
int main()
{//test1();test2();return 0;}

这篇关于C++笔记17•数据结构:二叉搜索树(K模型/KV模型实现)•的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1137284

相关文章

springboot+redis实现订单过期(超时取消)功能的方法详解

《springboot+redis实现订单过期(超时取消)功能的方法详解》在SpringBoot中使用Redis实现订单过期(超时取消)功能,有多种成熟方案,本文为大家整理了几个详细方法,文中的示例代... 目录一、Redis键过期回调方案(推荐)1. 配置Redis监听器2. 监听键过期事件3. Redi

SpringBoot全局异常拦截与自定义错误页面实现过程解读

《SpringBoot全局异常拦截与自定义错误页面实现过程解读》本文介绍了SpringBoot中全局异常拦截与自定义错误页面的实现方法,包括异常的分类、SpringBoot默认异常处理机制、全局异常拦... 目录一、引言二、Spring Boot异常处理基础2.1 异常的分类2.2 Spring Boot默

基于SpringBoot实现分布式锁的三种方法

《基于SpringBoot实现分布式锁的三种方法》这篇文章主要为大家详细介绍了基于SpringBoot实现分布式锁的三种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、基于Redis原生命令实现分布式锁1. 基础版Redis分布式锁2. 可重入锁实现二、使用Redisso

SpringBoo WebFlux+MongoDB实现非阻塞API过程

《SpringBooWebFlux+MongoDB实现非阻塞API过程》本文介绍了如何使用SpringBootWebFlux和MongoDB实现非阻塞API,通过响应式编程提高系统的吞吐量和响应性能... 目录一、引言二、响应式编程基础2.1 响应式编程概念2.2 响应式编程的优势2.3 响应式编程相关技术

C#实现将XML数据自动化地写入Excel文件

《C#实现将XML数据自动化地写入Excel文件》在现代企业级应用中,数据处理与报表生成是核心环节,本文将深入探讨如何利用C#和一款优秀的库,将XML数据自动化地写入Excel文件,有需要的小伙伴可以... 目录理解XML数据结构与Excel的对应关系引入高效工具:使用Spire.XLS for .NETC

C++ 右值引用(rvalue references)与移动语义(move semantics)深度解析

《C++右值引用(rvaluereferences)与移动语义(movesemantics)深度解析》文章主要介绍了C++右值引用和移动语义的设计动机、基本概念、实现方式以及在实际编程中的应用,... 目录一、右值引用(rvalue references)与移动语义(move semantics)设计动机1

Nginx更新SSL证书的实现步骤

《Nginx更新SSL证书的实现步骤》本文主要介绍了Nginx更新SSL证书的实现步骤,包括下载新证书、备份旧证书、配置新证书、验证配置及遇到问题时的解决方法,感兴趣的了解一下... 目录1 下载最新的SSL证书文件2 备份旧的SSL证书文件3 配置新证书4 验证配置5 遇到的http://www.cppc

Nginx之https证书配置实现

《Nginx之https证书配置实现》本文主要介绍了Nginx之https证书配置的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起... 目录背景介绍为什么不能部署在 IIS 或 NAT 设备上?具体实现证书获取nginx配置扩展结果验证

SpringBoot整合 Quartz实现定时推送实战指南

《SpringBoot整合Quartz实现定时推送实战指南》文章介绍了SpringBoot中使用Quartz动态定时任务和任务持久化实现多条不确定结束时间并提前N分钟推送的方案,本文结合实例代码给大... 目录前言一、Quartz 是什么?1、核心定位:解决什么问题?2、Quartz 核心组件二、使用步骤1

使用Redis实现会话管理的示例代码

《使用Redis实现会话管理的示例代码》文章介绍了如何使用Redis实现会话管理,包括会话的创建、读取、更新和删除操作,通过设置会话超时时间并重置,可以确保会话在用户持续活动期间不会过期,此外,展示了... 目录1. 会话管理的基本概念2. 使用Redis实现会话管理2.1 引入依赖2.2 会话管理基本操作