代码随想录算法训练营第35天|背包问题基础、46. 携带研究材料(01背包二维解法)(01背包一维解法)(acm)、416. 分割等和子集

本文主要是介绍代码随想录算法训练营第35天|背包问题基础、46. 携带研究材料(01背包二维解法)(01背包一维解法)(acm)、416. 分割等和子集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 0、背包问题基础
    • 01背包
  • 46. 携带研究材料(01背包)
    • 1、题目描述
    • 2、思路
    • 3、code(二维解法)
    • 3-1、code(一维解法)
    • 4、复杂度分析
  • 416. 分割等和子集
    • 1、题目描述
    • 2、思路
    • 3、code
    • 4、复杂度分析

0、背包问题基础

在这里插入图片描述

01背包

有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大
在这里插入图片描述

46. 携带研究材料(01背包)

题目链接:

1、题目描述

小明是一位科学家,他需要参加一场重要的国际科学大会,以展示自己的最新研究成果。他需要带一些研究材料,但是他的行李箱空间有限。这些研究材料包括实验设备、文献资料和实验样本等等,它们各自占据不同的空间,并且具有不同的价值。
小明的行李空间为 N,问小明应该如何抉择,才能携带最大价值的研究材料,每种研究材料只能选择一次,并且只有选与不选两种选择,不能进行切割。

2、思路

非常标准的01背包问题

3、code(二维解法)

M, N = map(int, input().split())
weight = list(map(int, input().split()))
value = list(map(int, input().split()))
# 横坐标是材料,纵坐标是行李容量
dp = [[0 for _ in range(N+1)] for _ in range(M)]# dp数组, dp[i][j]代表行李箱空间为j的情况下,从下标为[0, i]的物品里面任意取,能达到的最大价值
for i in range(0,M):dp[i][0] = 0
for j in range(1,N+1):if weight[0]<=j:dp[0][j] = value[0]
for i in range(0,M):for j in range(1,N+1):if j < weight[i]:dp[i][j] = dp[i-1][j]else:dp[i][j] = max(dp[i-1][j],dp[i-1][j-weight[i]]+value[i])print(dp[M-1][N])

3-1、code(一维解法)

在这里插入图片描述

M, N = map(int, input().split())
# M = 3 N = 2
weight = list(map(int, input().split()))
value = list(map(int, input().split()))
# dp[j]代表行李空间为j能够携带的研究材料的最大值 j = 0 1 2
dp = [0] * (N+1)
# print(dp)
for i in range(0,M): # 0 1 2 for j in range(N,weight[i]-1,-1): # 2 dp[j] = max(dp[j],dp[j-weight[i]]+value[i])# dp[2] = max(dp[2],dp[2-2] +...)
print(dp[N])

4、复杂度分析

1️⃣ 时间复杂度: O ( M × N ) O(M \times N) O(M×N)
2️⃣ 空间复杂度: O ( M × N ) O(M \times N) O(M×N)

416. 分割等和子集

题目链接:link

1、题目描述

给你一个 只包含正整数 的 非空 数组 nums 。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。

2、思路

把01背包问题套到本题上来。

  • 背包的体积为sum / 2
  • 背包要放入的商品(集合里的元素)重量为 元素的数值,价值也为元素的数值
  • 背包如果正好装满,说明找到了总和为 sum / 2 的子集。
  • 背包中每一个元素是不可重复放入。

3、code

class Solution:def canPartition(self, nums: List[int]) -> bool:# 物品重量为数值,价值为数值# 背包容量为总和的一半# 背包装满时获得的最大价值# 本体就是装满时(总和的一半)物品的数值和是否和背包容量一致if sum(nums) % 2 != 0:return Falsetarget = sum(nums) // 2# target = 11# dp[j]代表背包容量为j装的最大价值,j:0,1,2,,,,11dp = [0] * (target + 1)for i in range(len(nums)): # 物品从0,1,2,3 for j in range(target,nums[i]-1,-1): # 容量从11,,,,weight[0]dp[j] = max(dp[j],dp[j-nums[i]]+nums[i])if dp[target] == target:return Trueelse:return False

4、复杂度分析

1️⃣ 时间复杂度: O ( n 2 ) O(n^2) O(n2)
2️⃣ 空间复杂度: O ( n ) O(n) O(n)

这篇关于代码随想录算法训练营第35天|背包问题基础、46. 携带研究材料(01背包二维解法)(01背包一维解法)(acm)、416. 分割等和子集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1136005

相关文章

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

pip install jupyterlab失败的原因问题及探索

《pipinstalljupyterlab失败的原因问题及探索》在学习Yolo模型时,尝试安装JupyterLab但遇到错误,错误提示缺少Rust和Cargo编译环境,因为pywinpty包需要它... 目录背景问题解决方案总结背景最近在学习Yolo模型,然后其中要下载jupyter(有点LSVmu像一个

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

解决jupyterLab打开后出现Config option `template_path`not recognized by `ExporterCollapsibleHeadings`问题

《解决jupyterLab打开后出现Configoption`template_path`notrecognizedby`ExporterCollapsibleHeadings`问题》在Ju... 目录jupyterLab打开后出现“templandroidate_path”相关问题这是 tensorflo

如何解决Pycharm编辑内容时有光标的问题

《如何解决Pycharm编辑内容时有光标的问题》文章介绍了如何在PyCharm中配置VimEmulator插件,包括检查插件是否已安装、下载插件以及安装IdeaVim插件的步骤... 目录Pycharm编辑内容时有光标1.如果Vim Emulator前面有对勾2.www.chinasem.cn如果tools工

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Java多线程父线程向子线程传值问题及解决

《Java多线程父线程向子线程传值问题及解决》文章总结了5种解决父子之间数据传递困扰的解决方案,包括ThreadLocal+TaskDecorator、UserUtils、CustomTaskDeco... 目录1 背景2 ThreadLocal+TaskDecorator3 RequestContextH

关于Spring @Bean 相同加载顺序不同结果不同的问题记录

《关于Spring@Bean相同加载顺序不同结果不同的问题记录》本文主要探讨了在Spring5.1.3.RELEASE版本下,当有两个全注解类定义相同类型的Bean时,由于加载顺序不同,最终生成的... 目录问题说明测试输出1测试输出2@Bean注解的BeanDefiChina编程nition加入时机总结问题说明