代码随想录算法训练营第35天|背包问题基础、46. 携带研究材料(01背包二维解法)(01背包一维解法)(acm)、416. 分割等和子集

本文主要是介绍代码随想录算法训练营第35天|背包问题基础、46. 携带研究材料(01背包二维解法)(01背包一维解法)(acm)、416. 分割等和子集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 0、背包问题基础
    • 01背包
  • 46. 携带研究材料(01背包)
    • 1、题目描述
    • 2、思路
    • 3、code(二维解法)
    • 3-1、code(一维解法)
    • 4、复杂度分析
  • 416. 分割等和子集
    • 1、题目描述
    • 2、思路
    • 3、code
    • 4、复杂度分析

0、背包问题基础

在这里插入图片描述

01背包

有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大
在这里插入图片描述

46. 携带研究材料(01背包)

题目链接:

1、题目描述

小明是一位科学家,他需要参加一场重要的国际科学大会,以展示自己的最新研究成果。他需要带一些研究材料,但是他的行李箱空间有限。这些研究材料包括实验设备、文献资料和实验样本等等,它们各自占据不同的空间,并且具有不同的价值。
小明的行李空间为 N,问小明应该如何抉择,才能携带最大价值的研究材料,每种研究材料只能选择一次,并且只有选与不选两种选择,不能进行切割。

2、思路

非常标准的01背包问题

3、code(二维解法)

M, N = map(int, input().split())
weight = list(map(int, input().split()))
value = list(map(int, input().split()))
# 横坐标是材料,纵坐标是行李容量
dp = [[0 for _ in range(N+1)] for _ in range(M)]# dp数组, dp[i][j]代表行李箱空间为j的情况下,从下标为[0, i]的物品里面任意取,能达到的最大价值
for i in range(0,M):dp[i][0] = 0
for j in range(1,N+1):if weight[0]<=j:dp[0][j] = value[0]
for i in range(0,M):for j in range(1,N+1):if j < weight[i]:dp[i][j] = dp[i-1][j]else:dp[i][j] = max(dp[i-1][j],dp[i-1][j-weight[i]]+value[i])print(dp[M-1][N])

3-1、code(一维解法)

在这里插入图片描述

M, N = map(int, input().split())
# M = 3 N = 2
weight = list(map(int, input().split()))
value = list(map(int, input().split()))
# dp[j]代表行李空间为j能够携带的研究材料的最大值 j = 0 1 2
dp = [0] * (N+1)
# print(dp)
for i in range(0,M): # 0 1 2 for j in range(N,weight[i]-1,-1): # 2 dp[j] = max(dp[j],dp[j-weight[i]]+value[i])# dp[2] = max(dp[2],dp[2-2] +...)
print(dp[N])

4、复杂度分析

1️⃣ 时间复杂度: O ( M × N ) O(M \times N) O(M×N)
2️⃣ 空间复杂度: O ( M × N ) O(M \times N) O(M×N)

416. 分割等和子集

题目链接:link

1、题目描述

给你一个 只包含正整数 的 非空 数组 nums 。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。

2、思路

把01背包问题套到本题上来。

  • 背包的体积为sum / 2
  • 背包要放入的商品(集合里的元素)重量为 元素的数值,价值也为元素的数值
  • 背包如果正好装满,说明找到了总和为 sum / 2 的子集。
  • 背包中每一个元素是不可重复放入。

3、code

class Solution:def canPartition(self, nums: List[int]) -> bool:# 物品重量为数值,价值为数值# 背包容量为总和的一半# 背包装满时获得的最大价值# 本体就是装满时(总和的一半)物品的数值和是否和背包容量一致if sum(nums) % 2 != 0:return Falsetarget = sum(nums) // 2# target = 11# dp[j]代表背包容量为j装的最大价值,j:0,1,2,,,,11dp = [0] * (target + 1)for i in range(len(nums)): # 物品从0,1,2,3 for j in range(target,nums[i]-1,-1): # 容量从11,,,,weight[0]dp[j] = max(dp[j],dp[j-nums[i]]+nums[i])if dp[target] == target:return Trueelse:return False

4、复杂度分析

1️⃣ 时间复杂度: O ( n 2 ) O(n^2) O(n2)
2️⃣ 空间复杂度: O ( n ) O(n) O(n)

这篇关于代码随想录算法训练营第35天|背包问题基础、46. 携带研究材料(01背包二维解法)(01背包一维解法)(acm)、416. 分割等和子集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1136005

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

poj2576(二维背包)

题意:n个人分成两组,两组人数只差小于1 , 并且体重只差最小 对于人数要求恰好装满,对于体重要求尽量多,一开始没做出来,看了下解题,按照自己的感觉写,然后a了 状态转移方程:dp[i][j] = max(dp[i][j],dp[i-1][j-c[k]]+c[k]);其中i表示人数,j表示背包容量,k表示输入的体重的 代码如下: #include<iostream>#include<

hdu2159(二维背包)

这是我的第一道二维背包题,没想到自己一下子就A了,但是代码写的比较乱,下面的代码是我有重新修改的 状态转移:dp[i][j] = max(dp[i][j], dp[i-1][j-c[z]]+v[z]); 其中dp[i][j]表示,打了i个怪物,消耗j的耐力值,所得到的最大经验值 代码如下: #include<iostream>#include<algorithm>#include<

csu(背包的变形题)

题目链接 这是一道背包的变形题目。好题呀 题意:给n个怪物,m个人,每个人的魔法消耗和魔法伤害不同,求打死所有怪物所需的魔法 #include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>//#include<u>#include<map

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖