Mental-LLM——通过在线文本数据利用大型语言模型进行心理健康预测

本文主要是介绍Mental-LLM——通过在线文本数据利用大型语言模型进行心理健康预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

概述

源码地址:https://github.com/neuhai/Mental-LLM.git
论文地址:https://arxiv.org/abs/2307.14385

在一项关于哪些法律硕士适合精神健康护理的研究中,对以下五种法律硕士进行了比较

  • 羊驼-7b。
  • 羊驼-LoRA。
  • FLAN-T5-XXL
  • GPT-3.5
  • GPT-4.

作为本研究的背景,心理健康护理领域是近年来备受商业和组织管理研究关注的一个领域。然而,关于 LLM 在心理健康护理领域的表现及其准确性如何,还没有进行过全面的研究,因此本文将对 LLM 在综合心理健康护理领域的潜力进行调查。

与以往研究的区别

本文介绍了几项相关研究,并不是说根本没有与心理保健有关的法律硕士调查和研究。不过,论文指出,大多数研究都不如本研究全面,而且大多数研究都是使用简单的提示工程进行的零点研究。

本研究与现有研究的不同之处还在于,本研究全面研究和评估了各种技术,以提高 LLM 在心理健康领域的能力,如模型性能随提示的变化、微调时应注意的数据量或项目,以及用户对文本推理的评估。本研究的目的是

研究结果

这项研究的结果可大致归纳如下

(i) 在心理健康护理领域,我们证明 GPT-3 和 GPT-4 在其知识空间中存储了足够的知识。
(ii) 微调结果表明,LLMs 的能力可以在不同数据集上同时针对多个心理健康特定任务得到显著提高。
(iii) 我们为心理健康预测任务提供了开放的微调 LLM。
(iv) 提供了一个框架,包括数量和质量,以便为 LLMs 创建数据集,用于未来心理保健领域的研究。

关于(i)和(ii)

下表显示了每个模型的结果,从最上面一行开始依次为:零镜头学习、零镜头学习 + 添加比问题更多的上下文、零镜头学习 + 赋予 LLM 角色、零镜头学习 + 添加比问题更多的上下文 + 赋予 LLM 角色。

下面是 “Few-Shot Learning”,其中介绍并回答了一些问题。

从这些结果来看,TASK#1 中表现最好的竟然是现有的 BERT 模型 Mental-RoBERTa。微调模型在其他任务中的表现也优于现有的 GPT,而在 GPT 内部的比较显示,"零镜头 "和 "少镜头 "之间没有显著差异,这表明 GPT 系列所掌握的知识空间包含了足够的心理健康知识。这表明,在 GPT 系列所掌握的知识空间中,有足够的心理健康知识。

Alpaca 和 FLAN-T5 在微调前后的其他比较结果表明,微调前,Alpaca 和 FLAN-T5 的性能压倒性地优于 FLAN-T5。然而,微调后的结果显示,Alpaca 的性能已赶上 FLAN-T5。这一结果表明,与基于 LLM 的网络相比,FLAN-T5 等早期网络对自然语言的理解能力较差。因此,本研究认为,在微调过程中,Alpaca 可能从微调数据中吸收了更多信息,并接近了 FLAN-T5 的结果。

(iv) 关于

下图(论文中的图 1)显示了第(iii)点所述的已发布的 Mental-Alpaca 模型在改变训练集时的准确度变化。结果表明,经过微调后,准确率与基础模型相比基本有所提高。此外,可以看出数据集的大小与系统并不一定有直接关系。这表明,在 LLM 中微调数据集时,质量和多样性比数量问题更重要。

实验细节

至于提示语,我们尝试了三种模式–无语境、在语境中包含相似信息和让模型扮演专家角色–以及后两种模式的组合,以解决从句子中预测心理状态标签的任务,并比较绩效。

结果表明,如前所述,无论提示中是否存在信息,GPT 系列的表现都很好,而且我们判断有关精神护理的知识已作为基本信息嵌入知识空间。

下图分别为 "零镜头 "和 "少镜头 "的提示设计。

接下来,实验中使用的数据集是 Dreaddit、DepSeverity、SDCNL 和 CSSRS-Suicide。下面将简要介绍每个数据集。

**Dreaddit
**Dreaddit 数据集是 Reddit(美国一个流行的社交网站)上的帖子集合,包含五个领域(虐待、社交、焦虑、创伤后应激障碍和金融)的 10 个子数据集。多名人类注释者对海报中的某段文字是否表示压力进行了评估,并将注释汇总生成最终标签。该数据集用于后级二元压力预测(任务 1)。

**DepSeverity
**DepSeverity 数据集采用了与 Dreaddit 上收集的相同的提交内容,但不同之处在于它侧重于抑郁症:两名人类注释员根据 DSM-5 将提交内容分为四个抑郁症等级:极轻度、轻度、中度和重度。数据集以任务集的形式提供。该数据集用于两个贡献级任务。(i) 二元抑郁预测(即一篇帖子是否表明至少有轻度抑郁,任务 2)和 (ii) 四级抑郁预测(任务 3)。

**SDCNL
**SDCNL 数据集也是 Reddit 上帖子的集合,包括 r/SuicideWatch 和 r/Depression。通过人工标注,每篇帖子都被标记为表明有自杀意念或没有自杀意念。我们利用该数据集进行帖子级二元自杀意念预测(任务 4)。

**CSSRS-Suicide
**CSSRS-Suicide 数据集包含来自 15 个心理健康相关子论坛的贡献,四名活跃的精神病学家按照哥伦比亚自杀严重程度评定量表(C-SSRS)的指导原则对 500 名用户进行了注释。我们从五个层面对用户进行了人工标注:支持、指标、意念、行为和自杀未遂风险。我们利用该数据集完成了两项用户级任务:二元自杀风险预测(即用户是否至少表现出一个自杀指标,任务 5)和五级自杀风险预测(任务 6)。

训练数据和测试数据的分割比例以及数据数量如下图所示。

这些结果已在前面介绍过。

总结

当没有用于微调的数据和计算资源时,使用注重任务解决的 LLM 可能会产生更好的结果。在有足够数据和计算资源的情况下,对基于对话的模型进行微调已被证明是更好的选择。

另一方面,我们也注意到,像 Alpaca 这样具有交互式对话功能的模型可能更适合下游应用,例如为最终用户提供心理健康支持。
未来的挑战有两个

  • 需要进行更多的案例研究,使其更接近实际应用。
  • 多个数据集,需要使用更多 LLM 进行验证

这篇关于Mental-LLM——通过在线文本数据利用大型语言模型进行心理健康预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1133445

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

电力系统中的A类在线监测装置—APView400

随着电力系统的日益复杂和人们对电能质量要求的提高,电能质量在线监测装置在电力系统中得到广泛应用。目前,市场上的在线监测装置主要分为A类和B类两种类型,A类和B类在线监测装置主要区别在于应用场景、技术参数、通讯协议和扩展性。选择时应根据实际需求和应用场景综合考虑,并定期维护和校准。电能质量在线监测装置是用于实时监测电力系统中的电能质量参数的设备。 APView400电能质量A类在线监测装置以其多核

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi