分类预测|基于鲸鱼优化WOA最小二乘支持向量机LSSVM的数据分类预测Matlab程序WOA-LSSVM 多特征输入多类别输出

本文主要是介绍分类预测|基于鲸鱼优化WOA最小二乘支持向量机LSSVM的数据分类预测Matlab程序WOA-LSSVM 多特征输入多类别输出,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

分类预测|基于鲸鱼优化WOA最小二乘支持向量机LSSVM的数据分类预测Matlab程序WOA-LSSVM 多特征输入多类别输出

文章目录

  • 一、基本原理
      • 1. 最小二乘支持向量机(LSSVM)
        • LSSVM的基本步骤:
      • 2. 鲸鱼优化算法(WOA)
        • WOA的基本步骤:
      • 3. WOA-LSSVM的结合流程
        • 结合的流程如下:
      • 总结
  • 二、实验结果
  • 三、核心代码
  • 四、代码获取
  • 五、总结

分类预测|基于鲸鱼优化WOA最小二乘支持向量机LSSVM的数据分类预测Matlab程序WOA-LSSVM 多特征输入多类别输出

一、基本原理

WOA-LSSVM 是鲸鱼优化算法(Whale Optimization Algorithm, WOA)与最小二乘支持向量机(Least Squares Support Vector Machine, LSSVM)结合的一种分类预测方法。下面将详细介绍WOA和LSSVM的基本原理,然后阐述它们结合的流程。

1. 最小二乘支持向量机(LSSVM)

LSSVM 是支持向量机(SVM)的一个变体,它通过最小化平方损失函数来进行分类和回归任务。LSSVM 的主要特点是其优化问题是一个线性方程组,使得求解速度较快。

LSSVM的基本步骤:

在这里插入图片描述

2. 鲸鱼优化算法(WOA)

鲸鱼优化算法是一种基于鲸鱼捕食行为的自然启发式优化算法。WOA 模拟了座头鲸的捕食行为,包括螺旋式捕食、猎物包围等策略,用于优化问题。

WOA的基本步骤:
  1. 初始化
    随机初始化鲸鱼的种群位置。

  2. 适应度评价
    计算每个鲸鱼的适应度值。适应度值通常是目标函数的值。

  3. 更新位置
    根据当前最优解和鲸鱼的更新策略,更新鲸鱼的位置。这些更新策略包括围绕猎物的螺旋运动和包围猎物的行为。

  4. 选择最优解
    更新当前的最优解,并将其作为目标解进行下一轮迭代。

  5. 迭代
    重复步骤2至4直到满足停止准则(如最大迭代次数或适应度阈值)。

3. WOA-LSSVM的结合流程

WOA-LSSVM 结合了 WOA 和 LSSVM 的优点,用于优化 LSSVM 的超参数,以提高分类性能。

结合的流程如下:
  1. 定义优化问题
    设定 LSSVM 的超参数(如正则化参数 ( \gamma ) 和核函数参数),并将其作为 WOA 的优化目标。

  2. 初始化鲸鱼种群
    随机初始化鲸鱼种群的位置,每个鲸鱼的位置代表 LSSVM 的一组超参数。

  3. 训练 LSSVM
    对每个鲸鱼的位置(即每组超参数)进行训练,使用 LSSVM 模型训练数据,并计算模型的分类性能(例如准确率或交叉验证误差)。

  4. 计算适应度
    根据训练结果计算适应度值(通常是分类误差),作为 WOA 的优化目标。

  5. 更新鲸鱼位置
    使用 WOA 算法的更新策略来调整鲸鱼的位置。鲸鱼的位置更新基于当前最优解和个体之间的相互影响。

  6. 选择最优超参数
    迭代更新位置,直到满足停止准则。最终,选择适应度最好的鲸鱼位置对应的超参数作为 LSSVM 的最佳参数。

  7. 最终训练和预测
    使用找到的最佳超参数训练 LSSVM 模型,并进行分类预测。

总结

WOA-LSSVM 通过结合鲸鱼优化算法和最小二乘支持向量机,利用 WOA 优化 LSSVM 的超参数,从而提高分类性能。WOA 提供了有效的全局优化能力,而 LSSVM 通过最小化平方损失函数来提高模型训练的效率和准确性。结合这两者可以获得更优的分类结果。

二、实验结果

WOA-LSSVM实验结果:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

三、核心代码

%%  导入数据
res = xlsread('数据集.xlsx');%%  分析数据
num_class = length(unique(res(:, end)));  % 类别数(Excel最后一列放类别)
num_res = size(res, 1);                   % 样本数(每一行,是一个样本)
num_size = 0.7;                           % 训练集占数据集的比例
res = res(randperm(num_res), :);          % 打乱数据集(不打乱数据时,注释该行)%%  设置变量存储数据
P_train = []; P_test = [];
T_train = []; T_test = [];%%  划分数据集
for i = 1 : num_classmid_res = res((res(:, end) == i), :);                         % 循环取出不同类别的样本mid_size = size(mid_res, 1);                                  % 得到不同类别样本个数mid_tiran = round(num_size * mid_size);                       % 得到该类别的训练样本个数P_train = [P_train; mid_res(1: mid_tiran, 1: end - 1)];       % 训练集输入T_train = [T_train; mid_res(1: mid_tiran, end)];              % 训练集输出P_test  = [P_test; mid_res(mid_tiran + 1: end, 1: end - 1)];  % 测试集输入T_test  = [T_test; mid_res(mid_tiran + 1: end, end)];         % 测试集输出
end%%  数据转置
P_train = P_train'; P_test = P_test';
T_train = T_train'; T_test = T_test';%%  得到训练集和测试样本个数  
M = size(P_train, 2);
N = size(P_test , 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test  = mapminmax('apply', P_test, ps_input);
t_train = T_train;
t_test  = T_test ;

四、代码获取

私信即可 30米

五、总结

包括但不限于
优化BP神经网络,深度神经网络DNN,极限学习机ELM,鲁棒极限学习机RELM,核极限学习机KELM,混合核极限学习机HKELM,支持向量机SVR,相关向量机RVM,最小二乘回归PLS,最小二乘支持向量机LSSVM,LightGBM,Xgboost,RBF径向基神经网络,概率神经网络PNN,GRNN,Elman,随机森林RF,卷积神经网络CNN,长短期记忆网络LSTM,BiLSTM,GRU,BiGRU,TCN,BiTCN,CNN-LSTM,TCN-LSTM,BiTCN-BiGRU,LSTM–Attention,VMD–LSTM,PCA–BP等等

用于数据的分类,时序,回归预测。
多特征输入,单输出,多输出

这篇关于分类预测|基于鲸鱼优化WOA最小二乘支持向量机LSSVM的数据分类预测Matlab程序WOA-LSSVM 多特征输入多类别输出的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1132855

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。