分类预测|基于鲸鱼优化WOA最小二乘支持向量机LSSVM的数据分类预测Matlab程序WOA-LSSVM 多特征输入多类别输出

本文主要是介绍分类预测|基于鲸鱼优化WOA最小二乘支持向量机LSSVM的数据分类预测Matlab程序WOA-LSSVM 多特征输入多类别输出,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

分类预测|基于鲸鱼优化WOA最小二乘支持向量机LSSVM的数据分类预测Matlab程序WOA-LSSVM 多特征输入多类别输出

文章目录

  • 一、基本原理
      • 1. 最小二乘支持向量机(LSSVM)
        • LSSVM的基本步骤:
      • 2. 鲸鱼优化算法(WOA)
        • WOA的基本步骤:
      • 3. WOA-LSSVM的结合流程
        • 结合的流程如下:
      • 总结
  • 二、实验结果
  • 三、核心代码
  • 四、代码获取
  • 五、总结

分类预测|基于鲸鱼优化WOA最小二乘支持向量机LSSVM的数据分类预测Matlab程序WOA-LSSVM 多特征输入多类别输出

一、基本原理

WOA-LSSVM 是鲸鱼优化算法(Whale Optimization Algorithm, WOA)与最小二乘支持向量机(Least Squares Support Vector Machine, LSSVM)结合的一种分类预测方法。下面将详细介绍WOA和LSSVM的基本原理,然后阐述它们结合的流程。

1. 最小二乘支持向量机(LSSVM)

LSSVM 是支持向量机(SVM)的一个变体,它通过最小化平方损失函数来进行分类和回归任务。LSSVM 的主要特点是其优化问题是一个线性方程组,使得求解速度较快。

LSSVM的基本步骤:

在这里插入图片描述

2. 鲸鱼优化算法(WOA)

鲸鱼优化算法是一种基于鲸鱼捕食行为的自然启发式优化算法。WOA 模拟了座头鲸的捕食行为,包括螺旋式捕食、猎物包围等策略,用于优化问题。

WOA的基本步骤:
  1. 初始化
    随机初始化鲸鱼的种群位置。

  2. 适应度评价
    计算每个鲸鱼的适应度值。适应度值通常是目标函数的值。

  3. 更新位置
    根据当前最优解和鲸鱼的更新策略,更新鲸鱼的位置。这些更新策略包括围绕猎物的螺旋运动和包围猎物的行为。

  4. 选择最优解
    更新当前的最优解,并将其作为目标解进行下一轮迭代。

  5. 迭代
    重复步骤2至4直到满足停止准则(如最大迭代次数或适应度阈值)。

3. WOA-LSSVM的结合流程

WOA-LSSVM 结合了 WOA 和 LSSVM 的优点,用于优化 LSSVM 的超参数,以提高分类性能。

结合的流程如下:
  1. 定义优化问题
    设定 LSSVM 的超参数(如正则化参数 ( \gamma ) 和核函数参数),并将其作为 WOA 的优化目标。

  2. 初始化鲸鱼种群
    随机初始化鲸鱼种群的位置,每个鲸鱼的位置代表 LSSVM 的一组超参数。

  3. 训练 LSSVM
    对每个鲸鱼的位置(即每组超参数)进行训练,使用 LSSVM 模型训练数据,并计算模型的分类性能(例如准确率或交叉验证误差)。

  4. 计算适应度
    根据训练结果计算适应度值(通常是分类误差),作为 WOA 的优化目标。

  5. 更新鲸鱼位置
    使用 WOA 算法的更新策略来调整鲸鱼的位置。鲸鱼的位置更新基于当前最优解和个体之间的相互影响。

  6. 选择最优超参数
    迭代更新位置,直到满足停止准则。最终,选择适应度最好的鲸鱼位置对应的超参数作为 LSSVM 的最佳参数。

  7. 最终训练和预测
    使用找到的最佳超参数训练 LSSVM 模型,并进行分类预测。

总结

WOA-LSSVM 通过结合鲸鱼优化算法和最小二乘支持向量机,利用 WOA 优化 LSSVM 的超参数,从而提高分类性能。WOA 提供了有效的全局优化能力,而 LSSVM 通过最小化平方损失函数来提高模型训练的效率和准确性。结合这两者可以获得更优的分类结果。

二、实验结果

WOA-LSSVM实验结果:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

三、核心代码

%%  导入数据
res = xlsread('数据集.xlsx');%%  分析数据
num_class = length(unique(res(:, end)));  % 类别数(Excel最后一列放类别)
num_res = size(res, 1);                   % 样本数(每一行,是一个样本)
num_size = 0.7;                           % 训练集占数据集的比例
res = res(randperm(num_res), :);          % 打乱数据集(不打乱数据时,注释该行)%%  设置变量存储数据
P_train = []; P_test = [];
T_train = []; T_test = [];%%  划分数据集
for i = 1 : num_classmid_res = res((res(:, end) == i), :);                         % 循环取出不同类别的样本mid_size = size(mid_res, 1);                                  % 得到不同类别样本个数mid_tiran = round(num_size * mid_size);                       % 得到该类别的训练样本个数P_train = [P_train; mid_res(1: mid_tiran, 1: end - 1)];       % 训练集输入T_train = [T_train; mid_res(1: mid_tiran, end)];              % 训练集输出P_test  = [P_test; mid_res(mid_tiran + 1: end, 1: end - 1)];  % 测试集输入T_test  = [T_test; mid_res(mid_tiran + 1: end, end)];         % 测试集输出
end%%  数据转置
P_train = P_train'; P_test = P_test';
T_train = T_train'; T_test = T_test';%%  得到训练集和测试样本个数  
M = size(P_train, 2);
N = size(P_test , 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test  = mapminmax('apply', P_test, ps_input);
t_train = T_train;
t_test  = T_test ;

四、代码获取

私信即可 30米

五、总结

包括但不限于
优化BP神经网络,深度神经网络DNN,极限学习机ELM,鲁棒极限学习机RELM,核极限学习机KELM,混合核极限学习机HKELM,支持向量机SVR,相关向量机RVM,最小二乘回归PLS,最小二乘支持向量机LSSVM,LightGBM,Xgboost,RBF径向基神经网络,概率神经网络PNN,GRNN,Elman,随机森林RF,卷积神经网络CNN,长短期记忆网络LSTM,BiLSTM,GRU,BiGRU,TCN,BiTCN,CNN-LSTM,TCN-LSTM,BiTCN-BiGRU,LSTM–Attention,VMD–LSTM,PCA–BP等等

用于数据的分类,时序,回归预测。
多特征输入,单输出,多输出

这篇关于分类预测|基于鲸鱼优化WOA最小二乘支持向量机LSSVM的数据分类预测Matlab程序WOA-LSSVM 多特征输入多类别输出的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1132855

相关文章

定价129元!支持双频 Wi-Fi 5的华为AX1路由器发布

《定价129元!支持双频Wi-Fi5的华为AX1路由器发布》华为上周推出了其最新的入门级Wi-Fi5路由器——华为路由AX1,建议零售价129元,这款路由器配置如何?详细请看下文介... 华为 Wi-Fi 5 路由 AX1 已正式开售,新品支持双频 1200 兆、配有四个千兆网口、提供可视化智能诊断功能,建

在不同系统间迁移Python程序的方法与教程

《在不同系统间迁移Python程序的方法与教程》本文介绍了几种将Windows上编写的Python程序迁移到Linux服务器上的方法,包括使用虚拟环境和依赖冻结、容器化技术(如Docker)、使用An... 目录使用虚拟环境和依赖冻结1. 创建虚拟环境2. 冻结依赖使用容器化技术(如 docker)1. 创

Deepseek使用指南与提问优化策略方式

《Deepseek使用指南与提问优化策略方式》本文介绍了DeepSeek语义搜索引擎的核心功能、集成方法及优化提问策略,通过自然语言处理和机器学习提供精准搜索结果,适用于智能客服、知识库检索等领域... 目录序言1. DeepSeek 概述2. DeepSeek 的集成与使用2.1 DeepSeek API

Redis的数据过期策略和数据淘汰策略

《Redis的数据过期策略和数据淘汰策略》本文主要介绍了Redis的数据过期策略和数据淘汰策略,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录一、数据过期策略1、惰性删除2、定期删除二、数据淘汰策略1、数据淘汰策略概念2、8种数据淘汰策略

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

Python给Excel写入数据的四种方法小结

《Python给Excel写入数据的四种方法小结》本文主要介绍了Python给Excel写入数据的四种方法小结,包含openpyxl库、xlsxwriter库、pandas库和win32com库,具有... 目录1. 使用 openpyxl 库2. 使用 xlsxwriter 库3. 使用 pandas 库

Tomcat高效部署与性能优化方式

《Tomcat高效部署与性能优化方式》本文介绍了如何高效部署Tomcat并进行性能优化,以确保Web应用的稳定运行和高效响应,高效部署包括环境准备、安装Tomcat、配置Tomcat、部署应用和启动T... 目录Tomcat高效部署与性能优化一、引言二、Tomcat高效部署三、Tomcat性能优化总结Tom

SpringBoot定制JSON响应数据的实现

《SpringBoot定制JSON响应数据的实现》本文主要介绍了SpringBoot定制JSON响应数据的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录前言一、如何使用@jsonView这个注解?二、应用场景三、实战案例注解方式编程方式总结 前言

使用Python在Excel中创建和取消数据分组

《使用Python在Excel中创建和取消数据分组》Excel中的分组是一种通过添加层级结构将相邻行或列组织在一起的功能,当分组完成后,用户可以通过折叠或展开数据组来简化数据视图,这篇博客将介绍如何使... 目录引言使用工具python在Excel中创建行和列分组Python在Excel中创建嵌套分组Pyt

在Rust中要用Struct和Enum组织数据的原因解析

《在Rust中要用Struct和Enum组织数据的原因解析》在Rust中,Struct和Enum是组织数据的核心工具,Struct用于将相关字段封装为单一实体,便于管理和扩展,Enum用于明确定义所有... 目录为什么在Rust中要用Struct和Enum组织数据?一、使用struct组织数据:将相关字段绑