动手学深度学习8.2. 文本预处理-笔记练习(PyTorch)

2024-09-03 11:04

本文主要是介绍动手学深度学习8.2. 文本预处理-笔记练习(PyTorch),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本节课程地址:代码_哔哩哔哩_bilibili

本节教材地址:8.2. 文本预处理 — 动手学深度学习 2.0.0 documentation (d2l.ai)

本节开源代码:...>d2l-zh>pytorch>chapter_multilayer-perceptrons>text-preprocessing.ipynb


文本预处理

对于序列数据处理问题,我们在 8.1节 中 评估了所需的统计工具和预测时面临的挑战。 这样的数据存在许多种形式,文本是最常见例子之一。 例如,一篇文章可以被简单地看作一串单词序列,甚至是一串字符序列。 本节中,我们将解析文本的常见预处理步骤。 这些步骤通常包括:

  1. 将文本作为字符串加载到内存中。
  2. 将字符串拆分为词元(如单词和字符)。
  3. 建立一个词表,将拆分的词元映射到数字索引。
  4. 将文本转换为数字索引序列,方便模型操作。
import collections
import re
from d2l import torch as d2l

读取数据集

首先,我们从H.G.Well的时光机器中加载文本。 这是一个相当小的语料库,只有30000多个单词,但足够我们小试牛刀, 而现实中的文档集合可能会包含数十亿个单词。 下面的函数(将数据集读取到由多条文本行组成的列表中),其中每条文本行都是一个字符串。 为简单起见,我们在这里忽略了标点符号和字母大写。

#@save
d2l.DATA_HUB['time_machine'] = (d2l.DATA_URL + 'timemachine.txt','090b5e7e70c295757f55df93cb0a180b9691891a')def read_time_machine():  #@save"""将时间机器数据集加载到文本行的列表中"""with open(d2l.download('time_machine'), 'r') as f:lines = f.readlines()# re.sub('[^A-Za-z]+', ' ', line)是将非字母字符替换为空格,这里是为了去掉标点符号# .strip()是去掉提取的字符串两端的空白# .lower()是将所有字母都设置为小写字母,忽略字母大写return [re.sub('[^A-Za-z]+', ' ', line).strip().lower() for line in lines]lines = read_time_machine()
print(f'# 文本总行数: {len(lines)}')
print(lines[0])
print(lines[10])
# 文本总行数: 3221
the time machine by h g wells
twinkled and his usually pale face was flushed and animated the

词元化

下面的tokenize函数将文本行列表(lines)作为输入, 列表中的每个元素是一个文本序列(如一条文本行)。 [每个文本序列又被拆分成一个词元列表],词元(token)是文本的基本单位。 最后,返回一个由词元列表组成的列表,其中的每个词元都是一个字符串(string)。

def tokenize(lines, token='word'):  #@save"""将文本行拆分为单词或字符词元"""if token == 'word':return [line.split() for line in lines]elif token == 'char':return [list(line) for line in lines]else:print('错误:未知词元类型:' + token)tokens = tokenize(lines)
for i in range(11):print(tokens[i])
['the', 'time', 'machine', 'by', 'h', 'g', 'wells']
[]
[]
[]
[]
['i']
[]
[]
['the', 'time', 'traveller', 'for', 'so', 'it', 'will', 'be', 'convenient', 'to', 'speak', 'of', 'him']
['was', 'expounding', 'a', 'recondite', 'matter', 'to', 'us', 'his', 'grey', 'eyes', 'shone', 'and']
['twinkled', 'and', 'his', 'usually', 'pale', 'face', 'was', 'flushed', 'and', 'animated', 'the']

词表

词元的类型是字符串,而模型需要的输入是数字,因此这种类型不方便模型使用。 现在,让我们[构建一个字典,通常也叫做词表(vocabulary), 用来将字符串类型的词元映射到从0开始的数字索引中]。 我们先将训练集中的所有文档合并在一起,对它们的唯一词元进行统计, 得到的统计结果称之为语料(corpus)。 然后根据每个唯一词元的出现频率,为其分配一个数字索引。 很少出现的词元通常被移除,这可以降低复杂性。 另外,语料库中不存在或已删除的任何词元都将映射到一个特定的未知词元“<unk>”。 我们可以选择增加一个列表,用于保存那些被保留的词元, 例如:填充词元(“<pad>”); 序列开始词元(“<bos>”); 序列结束词元(“<eos>”)。

class Vocab:  #@save"""文本词表"""def __init__(self, tokens=None, min_freq=0, reserved_tokens=None):if tokens is None:tokens = []if reserved_tokens is None:reserved_tokens = []# 按出现频率排序counter = count_corpus(tokens)self._token_freqs = sorted(counter.items(), key=lambda x: x[1],reverse=True)# 未知词元的索引为0self.idx_to_token = ['<unk>'] + reserved_tokensself.token_to_idx = {token: idxfor idx, token in enumerate(self.idx_to_token)}for token, freq in self._token_freqs:# 出现频率< min_freq的token去掉,min_freq=0时表示包括所有tokenif freq < min_freq:breakif token not in self.token_to_idx:self.idx_to_token.append(token)self.token_to_idx[token] = len(self.idx_to_token) - 1def __len__(self):return len(self.idx_to_token)# 返回给定tokens的indexsdef __getitem__(self, tokens):if not isinstance(tokens, (list, tuple)):return self.token_to_idx.get(tokens, self.unk)return [self.__getitem__(token) for token in tokens]
# 返回给定indexs对于的tokensdef to_tokens(self, indices):if not isinstance(indices, (list, tuple)):return self.idx_to_token[indices]return [self.idx_to_token[index] for index in indices]@propertydef unk(self):  # 未知词元的索引为0return 0@propertydef token_freqs(self):return self._token_freqsdef count_corpus(tokens):  #@save"""统计词元的频率"""# 这里的tokens是1D列表或2D列表if len(tokens) == 0 or isinstance(tokens[0], list):# 将词元列表展平成一个列表tokens = [token for line in tokens for token in line]# Counter 对象内部使用字典来存储元素及其对应的计数,元素作为键,计数作为值return collections.Counter(tokens)

我们首先使用时光机器数据集作为语料库来[构建词表],然后打印前几个高频词元及其索引。

vocab = Vocab(tokens)
print(list(vocab.token_to_idx.items())[:10])
[('<unk>', 0), ('the', 1), ('i', 2), ('and', 3), ('of', 4), ('a', 5), ('to', 6), ('was', 7), ('in', 8), ('that', 9)]

现在,我们可以(将每一条文本行转换成一个数字索引列表)。

for i in [0, 10]:print('文本:', tokens[i])print('索引:', vocab[tokens[i]])
文本: ['the', 'time', 'machine', 'by', 'h', 'g', 'wells']
索引: [1, 19, 50, 40, 2183, 2184, 400]
文本: ['twinkled', 'and', 'his', 'usually', 'pale', 'face', 'was', 'flushed', 'and', 'animated', 'the']
索引: [2186, 3, 25, 1044, 362, 113, 7, 1421, 3, 1045, 1]

整合所有功能

在使用上述函数时,我们[将所有功能打包到load_corpus_time_machine函数中], 该函数返回corpus(词元索引列表)和vocab(时光机器语料库的词表)。 我们在这里所做的改变是:

  1. 为了简化后面章节中的训练,我们使用字符(而不是单词)实现文本词元化;
  2. 时光机器数据集中的每个文本行不一定是一个句子或一个段落,还可能是一个单词,因此返回的corpus仅处理为单个列表,而不是使用多词元列表构成的一个列表。
def load_corpus_time_machine(max_tokens=-1):  #@save"""返回时光机器数据集的词元索引列表和词表"""lines = read_time_machine()tokens = tokenize(lines, 'char')vocab = Vocab(tokens)# 因为时光机器数据集中的每个文本行不一定是一个句子或一个段落,# 所以将所有文本行展平到一个列表中corpus = [vocab[token] for line in tokens for token in line]# max_tokens>0意为限制返回的词元数量,为-1即为返回所有词元if max_tokens > 0: corpus = corpus[:max_tokens]return corpus, vocabcorpus, vocab = load_corpus_time_machine()
len(corpus), len(vocab)
# 输出的len(vocab)==28,因为tokens是按'char'分词的,包含<unk>+a-z+" "
(170580, 28)

小结

  • 文本是序列数据的一种最常见的形式之一。
  • 为了对文本进行预处理,我们通常将文本拆分为词元,构建词表将词元字符串映射为数字索引,并将文本数据转换为词元索引以供模型操作。

练习

  1. 词元化是一个关键的预处理步骤,它因语言而异。尝试找到另外三种常用的词元化文本的方法。

解:
1)中文分词:

  • 基于词典的匹配:使用词典进行正向或逆向最长匹配分词,如正向最大匹配法、逆向最大匹配法和双向最大匹配法。
  • 基于统计的方法:利用语料库和统计模型(如HMM、CRF)来识别词的边界。
  • 基于深度学习的方法:使用神经网络模型,如Bi-LSTM、BERT等进行词的序列标注和分词。

2) 英文分词:

  • 空格分隔:由于英文单词之间有天然的空格分隔,分词相对简单。
  • 词干提取(Stemming):将单词还原为基本形式,如将“running”转换为“run”。
  • 词形还原(Lemmatization):将单词转换为其词典形式,如将“am”、“are”还原为“be”。

3)日文分词:

  • 基于字符的分词:由于日文中汉字(漢字)和假名混合使用,有时会基于字符进行分词。
  • 基于统计和机器学习方法:使用统计模型和深度学习模型来识别词汇边界。

4)韩文分词:

  • 基于字符的分词:韩文(朝鲜文)使用音节文字,每个音节可以独立分词。
  • 基于规则和模式的分词:根据语言的语法规则和模式进行分词。

2. 在本节的实验中,将文本词元为单词和更改Vocab实例的min_freq参数。这对词表大小有何影响?
解:代码如下:

# 改为'word'分词
def load_corpus_time_machine(max_tokens=-1):"""返回时光机器数据集的词元索引列表和词表"""lines = read_time_machine()tokens = tokenize(lines, 'word')vocab = Vocab(tokens)corpus = [vocab[token] for line in tokens for token in line]if max_tokens > 0: corpus = corpus[:max_tokens]return corpus, vocabcorpus, vocab = load_corpus_time_machine()
len(corpus), len(vocab)
(32775, 4580)
# 按'word'分词,调整min_freq,vocab中会减少低频word
def load_corpus_time_machine(max_tokens=-1):"""返回时光机器数据集的词元索引列表和词表"""lines = read_time_machine()tokens = tokenize(lines, 'word')vocab = Vocab(tokens, min_freq=5)corpus = [vocab[token] for line in tokens for token in line]if max_tokens > 0: corpus = corpus[:max_tokens]return corpus, vocabcorpus, vocab = load_corpus_time_machine()
len(corpus), len(vocab)
(32775, 825)
# 按'char'分词,调整min_freq不影响结果
def load_corpus_time_machine(max_tokens=-1):"""返回时光机器数据集的词元索引列表和词表"""lines = read_time_machine()tokens = tokenize(lines, 'char')vocab = Vocab(tokens, min_freq=5)corpus = [vocab[token] for line in tokens for token in line]if max_tokens > 0: corpus = corpus[:max_tokens]return corpus, vocabcorpus, vocab = load_corpus_time_machine()
len(corpus), len(vocab)
(170580, 28)

这篇关于动手学深度学习8.2. 文本预处理-笔记练习(PyTorch)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1132791

相关文章

pytorch之torch.flatten()和torch.nn.Flatten()的用法

《pytorch之torch.flatten()和torch.nn.Flatten()的用法》:本文主要介绍pytorch之torch.flatten()和torch.nn.Flatten()的用... 目录torch.flatten()和torch.nn.Flatten()的用法下面举例说明总结torch

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

使用Python实现文本转语音(TTS)并播放音频

《使用Python实现文本转语音(TTS)并播放音频》在开发涉及语音交互或需要语音提示的应用时,文本转语音(TTS)技术是一个非常实用的工具,下面我们来看看如何使用gTTS和playsound库将文本... 目录什么是 gTTS 和 playsound安装依赖库实现步骤 1. 导入库2. 定义文本和语言 3

使用PyTorch实现手写数字识别功能

《使用PyTorch实现手写数字识别功能》在人工智能的世界里,计算机视觉是最具魅力的领域之一,通过PyTorch这一强大的深度学习框架,我们将在经典的MNIST数据集上,见证一个神经网络从零开始学会识... 目录当计算机学会“看”数字搭建开发环境MNIST数据集解析1. 认识手写数字数据库2. 数据预处理的

Python实现常用文本内容提取

《Python实现常用文本内容提取》在日常工作和学习中,我们经常需要从PDF、Word文档中提取文本,本文将介绍如何使用Python编写一个文本内容提取工具,有需要的小伙伴可以参考下... 目录一、引言二、文本内容提取的原理三、文本内容提取的设计四、文本内容提取的实现五、完整代码示例一、引言在日常工作和学

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

Pytorch微调BERT实现命名实体识别

《Pytorch微调BERT实现命名实体识别》命名实体识别(NER)是自然语言处理(NLP)中的一项关键任务,它涉及识别和分类文本中的关键实体,BERT是一种强大的语言表示模型,在各种NLP任务中显著... 目录环境准备加载预训练BERT模型准备数据集标记与对齐微调 BERT最后总结环境准备在继续之前,确

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言