【MATLAB源码-第160期】基于matlab的胡桃夹子优化算法(NOA)无人机三维路径规划,输出做短路径图和适应度曲线

本文主要是介绍【MATLAB源码-第160期】基于matlab的胡桃夹子优化算法(NOA)无人机三维路径规划,输出做短路径图和适应度曲线,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

操作环境:

MATLAB 2022a

1、算法描述

胡桃夹子优化算法(Nutcracker Optimization Algorithm, NOA)是一个灵感来源于胡桃夹子的故事的元启发式优化算法。这个故事中,胡桃夹子是一个能够将坚果壳轻易地破开以获取内部果仁的工具。在优化算法的语境下,这个过程被比喻为寻找问题解决方案的过程,即如何有效地“破开”问题的“坚硬外壳”以到达其核心或最优解。

灵感来源与算法理念
胡桃夹子优化算法(NOA)源自于传统的胡桃夹子工具,它通过一个简单但有效的机制破开坚硬的坚果壳以获取内部的果仁。这一过程需要精确的力度控制和对坚果特性的理解,以确保果仁完整而壳则被破开。将此过程抽象化后,NOA算法通过模拟胡桃夹子的精准力度控制和目标定位能力,来解决优化问题。算法旨在通过探索(Exploration)和利用(Exploitation)两个阶段的动态平衡,高效地导向最优解。

探索阶段的深入分析
在探索阶段,NOA算法模拟胡桃夹子寻找坚果的行为,以随机或半随机的方式在解空间中广泛搜索,寻找可能的有利区域。此阶段的目标是最大化搜索范围,确保不遗漏任何可能的最优解区域。算法采用多点搜索策略,通过生成大量随机解,并评估这些解的质量,来发现解空间中的有利区域。此外,探索阶段还引入了多样性保持机制,确保搜索过程不会过早地聚焦于局部区域,从而忽视其他潜在的最优解区域。

利用阶段的详细描绘
进入利用阶段后,NOA算法开始模仿胡桃夹子破开坚果壳的过程,通过更加集中和细致的搜索,在已识别的有利区域内寻找最优解。这一阶段关键在于算法如何在保证搜索效率的同时,精细调整搜索策略以接近全局最优解。为此,算法采用了梯度下降、局部搜索等技术,结合问题特性进行参数的动态调整。利用阶段的搜索不仅是对解的局部改进,而且通过对搜索方向和步长的智能调整,使得搜索过程能够在全局最优解的方向上持续进展。

适应性调整机制
NOA算法的一个核心特点是其适应性调整机制,该机制能够根据当前搜索过程的表现动态调整探索与利用之间的平衡。这一机制的设计灵感来源于胡桃夹子根据不同坚果的特性(如硬度和大小)调整施力的能力。在算法中,这种调整通过实时监测搜索过程中解的质量变化来实现。如果发现解的改进速率放缓,表明可能已经接近局部最优解,算法会增加探索力度,寻找新的有利区域;相反,如果在某一区域内连续获得解的显著改进,算法则增强利用策略,以精确逼近最优解。

算法流程的详细说明
NOA统的胡桃夹子故事和工具,这一点提供了算法设计的初步灵感。在故事中,胡桃夹子能够有效地破开坚果壳,揭示出内部的果仁。将这一过程抽象化,我们可以将其视为一种解决问题的策略:即通过有效的策略“破开”问题的复杂“外壳”,以揭示和接近问题的核心或最优解。

这一灵感转化为算法设计中的两个关键概念:探索(Exploration)和利用(Exploitation)。探索相当于在广阔的解空间中寻找有前景的“坚果”,即潜在的好解;而利用则相当于对找到的“坚果”施加压力,破开壳子获取果仁,即精细调整解向最优解靠拢。

算法组件详述
探索阶段
在探索阶段,算法通过随机或半随机的策略在解空间内广泛搜索,目的是为了发现可能包含最优解的区域。这个过程类似于在一片广阔的森林中寻找可能含有珍贵果仁的坚果。为了有效执行这一任务,算法采用多点搜索策略,同时从多个位置出发,以增加发现有价值区域的概率。

此外,探索阶段也会引入一定的随机扰动,以避免算法过早地聚焦于某个可能的局部最优区域,从而忽略了其他潜在的更优解区域。这种扰动可以通过改变搜索方向、调整搜索步长等方式实现。

利用阶段
一旦在探索阶段发现了有潜力的解区域,算法随即进入利用阶段。在这一阶段,算法将更加集中精力在这些有前景的区域进行深入搜索。这类似于已经找到坚果,并专注于如何有效地破开壳子获取里面的果仁。

利用阶段的关键在于如何精细调整搜索策略,以确保能够有效逼近最优解。这通常涉及到减小搜索步长、细化搜索方向等方法。此外,算法还会根据当前搜索结果的反馈动态调整搜索策略,以实现对最优解的精确定位。

适应性调整
胡桃夹子优化算法的一个显著特点是其适应性。算法能够根据当前的搜索进展和解的质量自动调整探索与利用之间的平衡。这种适应性调整确保了算法在搜索过程中既不会因过度探索而漫无目的,也不会因过度利用而陷入局部最优。

适应性调整的实现通常依赖于一个反馈机制,通过评估当前解集的多样性、改进速率等指标来动态调整探索和利用的强度。例如,如果算法发现解的改进速率下降,可能会增加探索的比重,以寻找新的有潜力的区域。

2、仿真结果演示

3、关键代码展示

4、MATLAB 源码获取

点击下方原文链接获取

【MATLAB源码-第160期】基于matlab的胡桃夹子优化算法(NOA)无人机三维路径规划,输出做短路径图和适应度曲线-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/Koukesuki/article/details/136615000?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522D71FE990-D79C-457A-A966-8498D8AEFF8F%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fblog.%2522%257D&request_id=D71FE990-D79C-457A-A966-8498D8AEFF8F&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~blog~first_rank_ecpm_v1~rank_v31_ecpm-1-136615000-null-null.nonecase&utm_term=160&spm=1018.2226.3001.4450

这篇关于【MATLAB源码-第160期】基于matlab的胡桃夹子优化算法(NOA)无人机三维路径规划,输出做短路径图和适应度曲线的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1132273

相关文章

Deepseek使用指南与提问优化策略方式

《Deepseek使用指南与提问优化策略方式》本文介绍了DeepSeek语义搜索引擎的核心功能、集成方法及优化提问策略,通过自然语言处理和机器学习提供精准搜索结果,适用于智能客服、知识库检索等领域... 目录序言1. DeepSeek 概述2. DeepSeek 的集成与使用2.1 DeepSeek API

Tomcat高效部署与性能优化方式

《Tomcat高效部署与性能优化方式》本文介绍了如何高效部署Tomcat并进行性能优化,以确保Web应用的稳定运行和高效响应,高效部署包括环境准备、安装Tomcat、配置Tomcat、部署应用和启动T... 目录Tomcat高效部署与性能优化一、引言二、Tomcat高效部署三、Tomcat性能优化总结Tom

解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)

《解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)》该文章介绍了使用Redis的阻塞队列和Stream流的消息队列来优化秒杀系统的方案,通过将秒杀流程拆分为两条流水线,使用Redi... 目录Redis秒杀优化方案(阻塞队列+Stream流的消息队列)什么是消息队列?消费者组的工作方式每

使用TomCat,service输出台出现乱码的解决

《使用TomCat,service输出台出现乱码的解决》本文介绍了解决Tomcat服务输出台中文乱码问题的两种方法,第一种方法是修改`logging.properties`文件中的`prefix`和`... 目录使用TomCat,service输出台出现乱码问题1解决方案问题2解决方案总结使用TomCat,

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

C++中实现调试日志输出

《C++中实现调试日志输出》在C++编程中,调试日志对于定位问题和优化代码至关重要,本文将介绍几种常用的调试日志输出方法,并教你如何在日志中添加时间戳,希望对大家有所帮助... 目录1. 使用 #ifdef _DEBUG 宏2. 加入时间戳:精确到毫秒3.Windows 和 MFC 中的调试日志方法MFC

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1