年化从19.1%提升到22.5%,全球大类资产轮动,加上RSRS择时,RSRS性能优化70倍。(附策略源码)

本文主要是介绍年化从19.1%提升到22.5%,全球大类资产轮动,加上RSRS择时,RSRS性能优化70倍。(附策略源码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原创内容第638篇,专注量化投资、个人成长与财富自由。

今天优化一下RSRS指标,并刷新一下策略。

大家知道,numpy的rolling apply性能不好,我们来优化一下:

import numpy as npfrom numpy.lib.stride_tricks import as_strided as strideddef rolling_window(a: np.array, window: int):'生成滚动窗口,以三维数组的形式展示'shape = a.shape[:-1] + (a.shape[-1] - window + 1, window)strides = a.strides + (a.strides[-1],)return strided(a, shape=shape, strides=strides)def numpy_rolling_regress(x1, y1, window: int = 18, array: bool = False):'在滚动窗口内进行,每个矩阵对应进行回归'x_series = np.array(x1)y_series = np.array(y1)# 创建一个一维数组dd = x_seriesx = rolling_window(dd, window)yT = rolling_window(y_series, window)y = np.array([i.reshape(window, 1) for i in yT])ones_vector = np.ones((1, x.shape[1]))XT = np.stack([np.vstack([ones_vector, row]) for row in x])  # 加入常数项X = np.array([matrix.T for matrix in XT])  # 以行数组表示reg_result = np.linalg.pinv(XT @ X) @ XT @ y  # 线性回归公示if array:return reg_resultelse:frame = pd.DataFrame()result_const = np.zeros(x_series.shape[0])const = reg_result.reshape(-1, 2)[:, 0]result_const[-const.shape[0]:] = constframe['const'] = result_constframe.index = x1.indexfor i in range(1, reg_result.shape[1]):result = np.zeros(x_series.shape[0])beta = reg_result.reshape(-1, 2)[:, i]result[-beta.shape[0]:] = betaframe[f'factor{i}'] = resultreturn frame@calc_by_symbol
def RSRS(low: pd.Series, high: pd.Series, N: int = 18, M: int = 600):beta_series = numpy_rolling_regress(low, high, window=N, array=True)beta = beta_series.reshape(-1, 2)[:, 1]beta_rollwindow = rolling_window(beta, M)beta_mean = np.mean(beta_rollwindow, axis=1)beta_std = np.std(beta_rollwindow, axis=1)zscore = (beta[M - 1:] - beta_mean) / beta_stdlen_to_pad = len(low.index) - len(zscore)# print(len_to_pad)pad = [np.nan for i in range(len_to_pad)]pad.extend(zscore)zscore = pd.Series(pad, index=low.index)len_to_pad = len(low.index) - len(beta)pad = [np.nan for i in range(len_to_pad)]pad.extend(beta)beta = pd.Series(pad,index=low.index)return beta

优化前的时间:

图片

优化之后性能可以接受(性能优化70倍!):

图片

当然我们需要确保计算结果是一致的:

图片

我们来测试一下策略——全球大类资产配置,加上RSRS择时后,

图片

图片

年化从19.1%提升到22.5%

图片

源码在这个位置:

图片

源代码下载:AI量化实验室——2024量化投资的星辰大海

吾日三省吾身

之前聊的“ABCZ”计划人生计划之"ABCZ",

Z计划作为投资系统,这个保持不变——应该是建议所有人都建立起这一样的系统,既是保底方案,在你本金大了之后,更新财富自由的动力。

但Z计划需要其他计划的助力,助力越快,则自由越早。

C计划是你理想中的生活,也许有各种各样的版本,但是,你喜欢什么样的感觉你是知道的。

内向型的人喜欢自己能独立完成事情,外向型的人喜欢张罗一堆人去完成一件事情,这完成不一样。

比如“做一个独立的研究者,创作者。”

万维刚在得到App上的课程火了之后,他辞掉了物理学者的工作,专心写作。

因为写作的收益已经远超他的本职工作。

你可以认为,这其实是他的plan B,而且非常稳妥。

ABCZ本质是要降低对于A计划的依赖,B计划要有积累,可持续,有复利,持续积累之后,其实就是C计划。

C计划不可能凭空出现,哪怕你中了彩票头奖,也是补充Z计划的本金。C计划肯定是B计划里一步步“生长”出来的。

只是B计划有了正反馈后,一步步积累,一点点调整,迭代走出来的。

因此,这里最大的变化,是强化B计划的可积累和复利,架设被动收入管道,这看来是当下最重要的事情。

历史文章:

咱们一起努力三年了!

Quantlab5.8全量代码发布:新增大模型因子挖掘,Deap因子挖掘系统优化

AI量化实验室——2024量化投资的星辰大海

这篇关于年化从19.1%提升到22.5%,全球大类资产轮动,加上RSRS择时,RSRS性能优化70倍。(附策略源码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1130138

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

性能测试介绍

性能测试是一种测试方法,旨在评估系统、应用程序或组件在现实场景中的性能表现和可靠性。它通常用于衡量系统在不同负载条件下的响应时间、吞吐量、资源利用率、稳定性和可扩展性等关键指标。 为什么要进行性能测试 通过性能测试,可以确定系统是否能够满足预期的性能要求,找出性能瓶颈和潜在的问题,并进行优化和调整。 发现性能瓶颈:性能测试可以帮助发现系统的性能瓶颈,即系统在高负载或高并发情况下可能出现的问题

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

高效+灵活,万博智云全球发布AWS无代理跨云容灾方案!

摘要 近日,万博智云推出了基于AWS的无代理跨云容灾解决方案,并与拉丁美洲,中东,亚洲的合作伙伴面向全球开展了联合发布。这一方案以AWS应用环境为基础,将HyperBDR平台的高效、灵活和成本效益优势与无代理功能相结合,为全球企业带来实现了更便捷、经济的数据保护。 一、全球联合发布 9月2日,万博智云CEO Michael Wong在线上平台发布AWS无代理跨云容灾解决方案的阐述视频,介绍了

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

在JS中的设计模式的单例模式、策略模式、代理模式、原型模式浅讲

1. 单例模式(Singleton Pattern) 确保一个类只有一个实例,并提供一个全局访问点。 示例代码: class Singleton {constructor() {if (Singleton.instance) {return Singleton.instance;}Singleton.instance = this;this.data = [];}addData(value)

MySQL高性能优化规范

前言:      笔者最近上班途中突然想丰富下自己的数据库优化技能。于是在查阅了多篇文章后,总结出了这篇! 数据库命令规范 所有数据库对象名称必须使用小写字母并用下划线分割 所有数据库对象名称禁止使用mysql保留关键字(如果表名中包含关键字查询时,需要将其用单引号括起来) 数据库对象的命名要能做到见名识意,并且最后不要超过32个字符 临时库表必须以tmp_为前缀并以日期为后缀,备份

黑神话,XSKY 星飞全闪单卷性能突破310万

当下,云计算仍然是企业主要的基础架构,随着关键业务的逐步虚拟化和云化,对于块存储的性能要求也日益提高。企业对于低延迟、高稳定性的存储解决方案的需求日益迫切。为了满足这些日益增长的 IO 密集型应用场景,众多云服务提供商正在不断推陈出新,推出具有更低时延和更高 IOPS 性能的云硬盘产品。 8 月 22 日 2024 DTCC 大会上(第十五届中国数据库技术大会),XSKY星辰天合正式公布了基于星