分类问题的评价指标:多分类【Precision、 micro-P、macro-P】、【Recall、micro-R、macro-R】、【F1、 micro-F1、macro-F1】

2024-09-02 02:32

本文主要是介绍分类问题的评价指标:多分类【Precision、 micro-P、macro-P】、【Recall、micro-R、macro-R】、【F1、 micro-F1、macro-F1】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、混淆矩阵

对于二分类的模型,预测结果与实际结果分别可以取0和1。我们用N和P代替0和1,T和F表示预测正确和错误。将他们两两组合,就形成了下图所示的混淆矩阵(注意:组合结果都是针对预测结果而言的)。

由于1和0是数字,阅读性不好,所以我们分别用P和N表示1和0两种结果。变换之后为PP,PN,NP,NN,阅读性也很差,我并不能轻易地看出来预测的正确性与否。因此,为了能够更清楚地分辨各种预测情况是否正确,我们将其中一个符号修改为T和F,以便于分辨出结果。

在这里插入图片描述

  • P(Positive):代表 1
  • N(Negative):代表 0
  • T(True):代表预测正确
  • F(False):代表预测错误

二、准确率、精确率、召回率、F1-Measure

在这里插入图片描述

  • 准确率(Accuracy):对于给定的测试数据集,分类器正确分类的样本数与总样本数之比。
    A c c u r a c y = T P + T N T P + T N + F P + F N = T P + T N 总 样 本 数 量 Accuracy=\cfrac{TP+TN}{TP+TN+FP+FN}=\cfrac{TP+TN}{总样本数量} Accuracy=TP+TN+FP+FNTP+TN=TP+TN
  • 精确率(Precision)**:精指分类正确的正样本个数(TP)占分类器判定为正样本的样本个数(TP+FP)的比例。
    P r e c i s i o n = T P T P + F P = 分 类 正 确 的 正 样 本 个 数 判 定 为 正 样 本 的 样 本 个 数 Precision=\cfrac{TP}{TP+FP}=\cfrac{分类正确的正样本个数}{判定为正样本的样本个数} Precision=TP+FPTP=
  • 召回率(Recall):召回率是指分类正确的正样本个数(TP)占真正的正样本个数(TP+FN)的比例。
    R e c a l l = T P T P + F N = 分 类 正 确 的 正 样 本 个 数 全 部 真 正 的 正 样 本 个 数 Recall=\cfrac{TP}{TP+FN}=\cfrac{分类正确的正样本个数}{全部真正的正样本个数} Recall=TP+FNTP=
  • F1-Measure值:就是精确率和召回率的调和平均值
    F 1 − M e a s u r e = 2 1 P r e c i s i o n + 1 R e c a l l = 2 × P r e c i s i o n × R e c a l l P r e c i s i o n + R e c a l l \begin{aligned}F1-Measure=\cfrac{2}{\cfrac{1}{Precision}+\cfrac{1}{Recall}}=\cfrac{2×Precision×Recall}{Precision+Recall}\end{aligned} F1Measure=Precision1+Recall12=Precision+Recall2×Precision×Recall

每个评估指标都有其价值,但如果只从单一的评估指标出发去评估模型,往往会得出片面甚至错误的结论;只有通过一组互补的指标去评估模型,才能更好地发现并解决模型存在的问题,从而更好地解决实际业务场景中遇到的问题。

三、多分类评价指标-案例

假设有如下的数据

预测真实
AA
AA
BA
CA
BB
BB
CB
BC
CC

可以看出,上表为一份样本量为9,类别数为3的含标注结果的三分类预测样本。TN对于准召的计算而言是不需要的,因此下面的表格中未统计该值。

1、按照定义计算Precision、Recall

1.1 对于类别A

TP = 2FP = 0
FN = 2TN = ~

P r e c i s i o n = T P T P + F P = 分 类 正 确 的 正 样 本 个 数 判 定 为 正 样 本 的 样 本 个 数 = 2 2 + 0 = 100 % = 1.0 Precision=\cfrac{TP}{TP+FP}=\cfrac{分类正确的正样本个数}{判定为正样本的样本个数}=\cfrac{2}{2+0}=100\%=1.0 Precision=TP+FPTP==2+02=100%=1.0

R e c a l l = T P T P + F N = 分 类 正 确 的 正 样 本 个 数 真 正 的 正 样 本 个 数 = 2 2 + 2 = 50 % = 0.5 Recall=\cfrac{TP}{TP+FN}=\cfrac{分类正确的正样本个数}{真正的正样本个数}=\cfrac{2}{2+2}=50\%=0.5 Recall=TP+FNTP==2+22=50%=0.5

1.2 对于类别B

TP = 2FP = 2
FN = 1TN = ~

P r e c i s i o n = T P T P + F P = 分 类 正 确 的 正 样 本 个 数 判 定 为 正 样 本 的 样 本 个 数 = 2 2 + 2 = 50 % = 0.5 Precision=\cfrac{TP}{TP+FP}=\cfrac{分类正确的正样本个数}{判定为正样本的样本个数}=\cfrac{2}{2+2}=50\%=0.5 Precision=TP+FPTP==2+22=50%=0.5

R e c a l l = T P T P + F N = 分 类 正 确 的 正 样 本 个 数 真 正 的 正 样 本 个 数 = 2 2 + 1 = 67 % = 0.67 Recall=\cfrac{TP}{TP+FN}=\cfrac{分类正确的正样本个数}{真正的正样本个数}=\cfrac{2}{2+1}=67\%=0.67 Recall=TP+FNTP==2+12=67%=0.67

1.3 对于类别C

TP = 1FP = 2
FN = 1TN = ~

P r e c i s i o n = T P T P + F P = 分 类 正 确 的 正 样 本 个 数 判 定 为 正 样 本 的 样 本 个 数 = 1 1 + 2 = 33 % = 0.33 Precision=\cfrac{TP}{TP+FP}=\cfrac{分类正确的正样本个数}{判定为正样本的样本个数}=\cfrac{1}{1+2}=33\%=0.33 Precision=TP+FPTP==1+21=33%=0.33

R e c a l l = T P T P + F N = 分 类 正 确 的 正 样 本 个 数 真 正 的 正 样 本 个 数 = 1 1 + 1 = 50 % = 0.5 Recall=\cfrac{TP}{TP+FN}=\cfrac{分类正确的正样本个数}{真正的正样本个数}=\cfrac{1}{1+1}=50\%=0.5 Recall=TP+FNTP==1+11=50%=0.5

2、调用sklearn的api进行验证

from sklearn.metrics import classification_report
from sklearn.metrics import precision_score, recall_score, f1_scoretrue_lable = [0, 0, 0, 0, 1, 1, 1, 2, 2]
prediction = [0, 0, 1, 2, 1, 1, 2, 1, 2]measure_result = classification_report(true_lable, prediction)
print('measure_result = \n', measure_result)

打印结果:

measure_result = precision    recall  f1-score   support0       1.00      0.50      0.67         41       0.50      0.67      0.57         32       0.33      0.50      0.40         2accuracy                           0.56         9macro avg       0.61      0.56      0.55         9
weighted avg       0.69      0.56      0.58         9

四、Micro-F1、Macro-F1、weighted-F1

在这里插入图片描述

总的来说,微观F1(micro-F1)和宏观F1(macro-F1)都是F1合并后的结果,这两个F1都是用在多分类任务中的评价指标,是两种不一样的求F1均值的方式;micro-F1和macro-F1的计算方法有差异,得出来的结果也略有差异;

1、Micro-F1

Micro-F1 不需要区分类别,直接使用总体样本的准召计算f1 score。

  • 计算方法:先计算所有类别的总的Precision和Recall,然后计算出来的F1值即为micro-F1;

  • 使用场景:在计算公式中考虑到了每个类别的数量,所以适用于数据分布不平衡的情况;但同时因为考虑到数据的数量,所以在数据极度不平衡的情况下,数量较多数量的类会较大的影响到F1的值;

该样本的混淆矩阵如下:

TP = 5FP = 4
FN = 2TN = ~

P r e c i s i o n = T P T P + F P = 分 类 正 确 的 正 样 本 个 数 判 定 为 正 样 本 的 样 本 个 数 = 5 5 + 4 = 55.56 % = 0.5556 Precision=\cfrac{TP}{TP+FP}=\cfrac{分类正确的正样本个数}{判定为正样本的样本个数}=\cfrac{5}{5+4}=55.56\%=0.5556 Precision=TP+FPTP==5+45=55.56%=0.5556

R e c a l l = T P T P + F N = 分 类 正 确 的 正 样 本 个 数 真 正 的 正 样 本 个 数 = 5 5 + 4 = 55.56 % = 0.5556 Recall=\cfrac{TP}{TP+FN}=\cfrac{分类正确的正样本个数}{真正的正样本个数}=\cfrac{5}{5+4}=55.56\%=0.5556 Recall=TP+FNTP==5+45=55.56%=0.5556

F 1 − M e a s u r e = 2 1 P r e c i s i o n + 1 R e c a l l = 2 × P r e c i s i o n × R e c a l l P r e c i s i o n + R e c a l l = 2 × 0.5556 × 0.5556 0.5556 + 0.5556 = 0.5556 \begin{aligned}F1-Measure=\cfrac{2}{\cfrac{1}{Precision}+\cfrac{1}{Recall}}=\cfrac{2×Precision×Recall}{Precision+Recall}=\cfrac{2×0.5556×0.5556}{0.5556+0.5556}=0.5556\end{aligned} F1Measure=Precision1+Recall12=Precision+Recall2×Precision×Recall=0.5556+0.55562×0.5556×0.5556=0.5556

2、Macro-F1

不同于micro f1,macro f1需要先计算出每一个类别的准召及其f1 score,然后通过求均值得到在整个样本上的f1 score。

  • 计算方法:将所有类别的Precision和Recall求平均,然后计算F1值作为macro-F1;
  • 使用场景:没有考虑到数据的数量,所以会平等的看待每一类(因为每一类的precision和recall都在0-1之间),会相对受高precision和高recall类的影响较大;

类别A的​:
F 1 − A = 2 × P r e c i s i o n × R e c a l l P r e c i s i o n + R e c a l l = 2 × 1 × 0.5 1 + 0.5 = 0.6667 \begin{aligned}F1-A=\cfrac{2×Precision×Recall}{Precision+Recall}=\cfrac{2×1×0.5}{1+0.5}=0.6667\end{aligned} F1A=Precision+Recall2×Precision×Recall=1+0.52×1×0.5=0.6667

类别B的​:
F 1 − B = 2 × P r e c i s i o n × R e c a l l P r e c i s i o n + R e c a l l = 2 × 0.5 × 0.67 0.5 + 0.67 = 0.57265 \begin{aligned}F1-B=\cfrac{2×Precision×Recall}{Precision+Recall}=\cfrac{2×0.5×0.67}{0.5+0.67}=0.57265\end{aligned} F1B=Precision+Recall2×Precision×Recall=0.5+0.672×0.5×0.67=0.57265

类别C的​:
F 1 − C = 2 × P r e c i s i o n × R e c a l l P r e c i s i o n + R e c a l l = 2 × 0.33 × 0.5 0.33 + 0.5 = 0.39759 \begin{aligned}F1-C=\cfrac{2×Precision×Recall}{Precision+Recall}=\cfrac{2×0.33×0.5}{0.33+0.5}=0.39759\end{aligned} F1C=Precision+Recall2×Precision×Recall=0.33+0.52×0.33×0.5=0.39759

Macro-F1为上面三者的平均值:
M a c r o − F 1 = F 1 − A + F 1 − B + F 1 − C 3 = 0.6667 + 0.57265 + 0.39759 3 = 0.546 \begin{aligned}Macro-F1=\cfrac{F1-A + F1-B + F1-C}{3}=\cfrac{0.6667 + 0.57265 + 0.39759}{3}=0.546\end{aligned} MacroF1=3F1A+F1B+F1C=30.6667+0.57265+0.39759=0.546

3、weighted-F1

除了micro-F1和macro-F1,还有weighted-F1,是一个将F1-score乘以该类的比例之后相加的结果,也可以看做是macro-F1的变体吧。

weighted-F1和macro-F1的区别在于:macro-F1对每一类都赋予了相同的权重,而weighted-F1则根据每一类的比例分别赋予不同的权重。

五、指标的选择问题

“我们看到,对于 Macro 来说, 小类别相当程度上拉高了 Precision 的值,而实际上, 并没有那么多样本被正确分类,考虑到实际的环境中,真实样本分布和训练样本分布相同的情况下,这种指标明显是有问题的, 小类别起到的作用太大,以至于大样本的分类情况不佳。 而对于 Micro 来说,其考虑到了这种样本不均衡的问题, 因此在这种情况下相对较佳。

总的来说, 如果你的类别比较均衡,则随便; 如果你认为大样本的类别应该占据更重要的位置, 使用Micro; 如果你认为小样本也应该占据重要的位置,则使用 Macro; 如果 Micro << Macro , 则意味着在大样本类别中出现了严重的分类错误; 如果 Macro << Micro , 则意味着小样本类别中出现了严重的分类错误。

为了解决 Macro 无法衡量样本均衡问题,一个很好的方法是求加权的 Macro, 因此 Weighed F1 出现了。”

六、代码

1、数据01

true_lable = [0, 0, 0, 0, 1, 1, 1, 2, 2]
prediction = [0, 0, 1, 2, 1, 1, 2, 1, 2]
from sklearn.metrics import classification_report
from sklearn.metrics import precision_score, recall_score, f1_scoretrue_lable = [0, 0, 0, 0, 1, 1, 1, 2, 2]
prediction = [0, 0, 1, 2, 1, 1, 2, 1, 2]measure_result = classification_report(true_lable, prediction)
print('measure_result = \n', measure_result)print("----------------------------- precision(精确率)-----------------------------")
precision_score_average_None = precision_score(true_lable, prediction, average=None)
precision_score_average_micro = precision_score(true_lable, prediction, average='micro')
precision_score_average_macro = precision_score(true_lable, prediction, average='macro')
precision_score_average_weighted = precision_score(true_lable, prediction, average='weighted')
print('precision_score_average_None = ', precision_score_average_None)
print('precision_score_average_micro = ', precision_score_average_micro)
print('precision_score_average_macro = ', precision_score_average_macro)
print('precision_score_average_weighted = ', precision_score_average_weighted)print("\n\n----------------------------- recall(召回率)-----------------------------")
recall_score_average_None = recall_score(true_lable, prediction, average=None)
recall_score_average_micro = recall_score(true_lable, prediction, average='micro')
recall_score_average_macro = recall_score(true_lable, prediction, average='macro')
recall_score_average_weighted = recall_score(true_lable, prediction, average='weighted')
print('recall_score_average_None = ', recall_score_average_None)
print('recall_score_average_micro = ', recall_score_average_micro)
print('recall_score_average_macro = ', recall_score_average_macro)
print('recall_score_average_weighted = ', recall_score_average_weighted)print("\n\n----------------------------- F1-value-----------------------------")
f1_score_average_None = f1_score(true_lable, prediction, average=None)
f1_score_average_micro = f1_score(true_lable, prediction, average='micro')
f1_score_average_macro = f1_score(true_lable, prediction, average='macro')
f1_score_average_weighted = f1_score(true_lable, prediction, average='weighted')
print('f1_score_average_None = ', f1_score_average_None)
print('f1_score_average_micro = ', f1_score_average_micro)
print('f1_score_average_macro = ', f1_score_average_macro)
print('f1_score_average_weighted = ', f1_score_average_weighted)

打印结果:

measure_result = precision    recall  f1-score   support0       1.00      0.50      0.67         41       0.50      0.67      0.57         32       0.33      0.50      0.40         2accuracy                           0.56         9macro avg       0.61      0.56      0.55         9
weighted avg       0.69      0.56      0.58         9----------------------------- precision(精确率)-----------------------------
precision_score_average_None =  [1.         0.5        0.33333333]
precision_score_average_micro =  0.5555555555555556
precision_score_average_macro =  0.611111111111111
precision_score_average_weighted =  0.6851851851851852----------------------------- recall(召回率)-----------------------------
recall_score_average_None =  [0.5        0.66666667 0.5       ]
recall_score_average_micro =  0.5555555555555556
recall_score_average_macro =  0.5555555555555555
recall_score_average_weighted =  0.5555555555555556----------------------------- F1-value-----------------------------
f1_score_average_None =  [0.66666667 0.57142857 0.4       ]
f1_score_average_micro =  0.5555555555555556
f1_score_average_macro =  0.546031746031746
f1_score_average_weighted =  0.5756613756613757Process finished with exit code 0

2、数据02

true_lable = [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3]
prediction = [3, 0, 0, 0, 0, 0, 0, 0, 2, 3, 3, 1, 1, 1, 1, 1, 1, 3, 1, 2, 2, 2, 2, 2, 3, 0, 3, 3, 3, 3]
from sklearn.metrics import classification_report
from sklearn.metrics import precision_score, recall_score, f1_scoretrue_lable = [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3]
prediction = [3, 0, 0, 0, 0, 0, 0, 0, 2, 3, 3, 1, 1, 1, 1, 1, 1, 3, 1, 2, 2, 2, 2, 2, 3, 0, 3, 3, 3, 3]measure_result = classification_report(true_lable, prediction)
print('measure_result = \n', measure_result)print("----------------------------- precision(精确率)-----------------------------")
precision_score_average_None = precision_score(true_lable, prediction, average=None)
precision_score_average_micro = precision_score(true_lable, prediction, average='micro')
precision_score_average_macro = precision_score(true_lable, prediction, average='macro')
precision_score_average_weighted = precision_score(true_lable, prediction, average='weighted')
print('precision_score_average_None = ', precision_score_average_None)
print('precision_score_average_micro = ', precision_score_average_micro)
print('precision_score_average_macro = ', precision_score_average_macro)
print('precision_score_average_weighted = ', precision_score_average_weighted)print("\n\n----------------------------- recall(召回率)-----------------------------")
recall_score_average_None = recall_score(true_lable, prediction, average=None)
recall_score_average_micro = recall_score(true_lable, prediction, average='micro')
recall_score_average_macro = recall_score(true_lable, prediction, average='macro')
recall_score_average_weighted = recall_score(true_lable, prediction, average='weighted')
print('recall_score_average_None = ', recall_score_average_None)
print('recall_score_average_micro = ', recall_score_average_micro)
print('recall_score_average_macro = ', recall_score_average_macro)
print('recall_score_average_weighted = ', recall_score_average_weighted)print("\n\n----------------------------- F1-value-----------------------------")
f1_score_average_None = f1_score(true_lable, prediction, average=None)
f1_score_average_micro = f1_score(true_lable, prediction, average='micro')
f1_score_average_macro = f1_score(true_lable, prediction, average='macro')
f1_score_average_weighted = f1_score(true_lable, prediction, average='weighted')
print('f1_score_average_None = ', f1_score_average_None)
print('f1_score_average_micro = ', f1_score_average_micro)
print('f1_score_average_macro = ', f1_score_average_macro)
print('f1_score_average_weighted = ', f1_score_average_weighted)

打印结果:

measure_result = precision    recall  f1-score   support0       0.88      0.78      0.82         91       0.86      0.75      0.80         82       0.83      0.71      0.77         73       0.56      0.83      0.67         6accuracy                           0.77        30macro avg       0.78      0.77      0.76        30
weighted avg       0.80      0.77      0.77        30----------------------------- precision(精确率)-----------------------------
precision_score_average_None =  [0.875      0.85714286 0.83333333 0.55555556]
precision_score_average_micro =  0.7666666666666667
precision_score_average_macro =  0.7802579365079365
precision_score_average_weighted =  0.7966269841269841----------------------------- recall(召回率)-----------------------------
recall_score_average_None =  [0.77777778 0.75       0.71428571 0.83333333]
recall_score_average_micro =  0.7666666666666667
recall_score_average_macro =  0.7688492063492064
recall_score_average_weighted =  0.7666666666666667----------------------------- F1-value-----------------------------
f1_score_average_None =  [0.82352941 0.8        0.76923077 0.66666667]
f1_score_average_micro =  0.7666666666666667
f1_score_average_macro =  0.7648567119155354
f1_score_average_weighted =  0.7732126696832579Process finished with exit code 0



参考资料:
Macro-F1 Score与Micro-F1 Score
分类问题的几个评价指标(Precision、Recall、F1-Score、Micro-F1、Macro-F1)
分类问题中的各种评价指标——precision,recall,F1-score,macro-F1,micro-F1

这篇关于分类问题的评价指标:多分类【Precision、 micro-P、macro-P】、【Recall、micro-R、macro-R】、【F1、 micro-F1、macro-F1】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128745

相关文章

mybatis和mybatis-plus设置值为null不起作用问题及解决

《mybatis和mybatis-plus设置值为null不起作用问题及解决》Mybatis-Plus的FieldStrategy主要用于控制新增、更新和查询时对空值的处理策略,通过配置不同的策略类型... 目录MyBATis-plusFieldStrategy作用FieldStrategy类型每种策略的作

linux下多个硬盘划分到同一挂载点问题

《linux下多个硬盘划分到同一挂载点问题》在Linux系统中,将多个硬盘划分到同一挂载点需要通过逻辑卷管理(LVM)来实现,首先,需要将物理存储设备(如硬盘分区)创建为物理卷,然后,将这些物理卷组成... 目录linux下多个硬盘划分到同一挂载点需要明确的几个概念硬盘插上默认的是非lvm总结Linux下多

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

pip install jupyterlab失败的原因问题及探索

《pipinstalljupyterlab失败的原因问题及探索》在学习Yolo模型时,尝试安装JupyterLab但遇到错误,错误提示缺少Rust和Cargo编译环境,因为pywinpty包需要它... 目录背景问题解决方案总结背景最近在学习Yolo模型,然后其中要下载jupyter(有点LSVmu像一个

解决jupyterLab打开后出现Config option `template_path`not recognized by `ExporterCollapsibleHeadings`问题

《解决jupyterLab打开后出现Configoption`template_path`notrecognizedby`ExporterCollapsibleHeadings`问题》在Ju... 目录jupyterLab打开后出现“templandroidate_path”相关问题这是 tensorflo

如何解决Pycharm编辑内容时有光标的问题

《如何解决Pycharm编辑内容时有光标的问题》文章介绍了如何在PyCharm中配置VimEmulator插件,包括检查插件是否已安装、下载插件以及安装IdeaVim插件的步骤... 目录Pycharm编辑内容时有光标1.如果Vim Emulator前面有对勾2.www.chinasem.cn如果tools工

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Java多线程父线程向子线程传值问题及解决

《Java多线程父线程向子线程传值问题及解决》文章总结了5种解决父子之间数据传递困扰的解决方案,包括ThreadLocal+TaskDecorator、UserUtils、CustomTaskDeco... 目录1 背景2 ThreadLocal+TaskDecorator3 RequestContextH

关于Spring @Bean 相同加载顺序不同结果不同的问题记录

《关于Spring@Bean相同加载顺序不同结果不同的问题记录》本文主要探讨了在Spring5.1.3.RELEASE版本下,当有两个全注解类定义相同类型的Bean时,由于加载顺序不同,最终生成的... 目录问题说明测试输出1测试输出2@Bean注解的BeanDefiChina编程nition加入时机总结问题说明

关于最长递增子序列问题概述

《关于最长递增子序列问题概述》本文详细介绍了最长递增子序列问题的定义及两种优化解法:贪心+二分查找和动态规划+状态压缩,贪心+二分查找时间复杂度为O(nlogn),通过维护一个有序的“尾巴”数组来高效... 一、最长递增子序列问题概述1. 问题定义给定一个整数序列,例如 nums = [10, 9, 2