NumPy(五):数组统计【平均值:mean()、最大值:max()、最小值:min()、标准差:std()、方差:var()、中位数:median()】【axis=0:按列运算;axis=0:按列】

本文主要是介绍NumPy(五):数组统计【平均值:mean()、最大值:max()、最小值:min()、标准差:std()、方差:var()、中位数:median()】【axis=0:按列运算;axis=0:按列】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

统计运算

  • np.max()
  • np.min()
  • np.median()
  • np.mean()
  • np.std()
  • np.var()
  • np.argmax(axis=) — 最大元素对应的下标
  • np.argmin(axis=) — 最小元素对应的下标

NumPy提供了一个N维数组类型ndarray,它描述了 相同类型 的“items”的集合。(NumPy provides an N-dimensional array type, the ndarray, which describes a collection of “items” of the same type.)

在这里插入图片描述

用ndarray进行存储:

import numpy as np# 创建ndarray
score = np.array(
[[80, 89, 86, 67, 79],
[78, 97, 89, 67, 81],
[90, 94, 78, 67, 74],
[91, 91, 90, 67, 69],
[76, 87, 75, 67, 86],
[70, 79, 84, 67, 84],
[94, 92, 93, 67, 64],
[86, 85, 83, 67, 80]])score

返回结果:

array([[80, 89, 86, 67, 79],[78, 97, 89, 67, 81],[90, 94, 78, 67, 74],[91, 91, 90, 67, 69],[76, 87, 75, 67, 86],[70, 79, 84, 67, 84],[94, 92, 93, 67, 64],[86, 85, 83, 67, 80]])

如果想要知道学生成绩最大的分数,或者做小分数应该怎么做?

一、统计指标

在数据挖掘/机器学习领域,统计指标的值也是我们分析问题的一种方式。

  • axis为0,按列运算
  • axis为1,按行运算

常用的指标如下:

  • min(a, axis)
    • Return the minimum of an array or minimum along an axis.
  • max(a, axis])
    • Return the maximum of an array or maximum along an axis.
  • median(a, axis)
    • Compute the median along the specified axis.
  • mean(a, axis, dtype)
    • Compute the arithmetic mean along the specified axis.
  • std(a, axis, dtype)
    • Compute the standard deviation along the specified axis.
  • var(a, axis, dtype)
    • Compute the variance along the specified axis.

二、案例:学生成绩统计运算

进行统计的时候,axis 轴的取值并不一定,Numpy中不同的API轴的值都不一样,在这里,axis 0代表列, axis 1代表行去进行统计

# 接下来对于前四名学生,进行一些统计运算
# 指定列 去统计
temp = score[:4, 0:5]
print("前四名学生,各科成绩的最大分:{}".format(np.max(temp, axis=0)))
print("前四名学生,各科成绩的最小分:{}".format(np.min(temp, axis=0)))
print("前四名学生,各科成绩波动情况:{}".format(np.std(temp, axis=0)))
print("前四名学生,各科成绩的平均分:{}".format(np.mean(temp, axis=0)))

结果:

前四名学生,各科成绩的最大分:[96 97 72 98 89]
前四名学生,各科成绩的最小分:[55 57 45 76 77]
前四名学生,各科成绩波动情况:[16.25576821 14.92271758 10.40432602  8.0311892   4.32290412]
前四名学生,各科成绩的平均分:[78.5  75.75 62.5  85.   82.25]

如果需要统计出某科最高分对应的是哪个同学?

  • np.argmax(temp, axis=)
  • np.argmin(temp, axis=)
print("前四名学生,各科成绩最高分对应的学生下标:{}".format(np.argmax(temp, axis=0)))

结果:

前四名学生,各科成绩最高分对应的学生下标:[0 2 0 0 1]

三、案例

import numpy as npar = np.arange(6).reshape(2, 3)
print('ar = ', ar)
# 统计运算
print('ar.mean() = ', ar.mean())  # 求平均值
print('按列求平均值:np.mean(ar, axis=0) = ', np.mean(ar, axis=0))  # 按列求平均值
print('按行求平均值:np.mean(ar, axis=1) = ', np.mean(ar, axis=1))  # 按行求平均值
print('ar.max() = ', ar.max())  # 求最大值
print('按列求最大值:np.max(ar, axis=0) = ', np.max(ar, axis=0))  # 按列求最大值
print('按行求最大值:np.max(ar, axis=1) = ', np.max(ar, axis=1))  # 按行求最大值
print('ar.min() = ', ar.min())  # 求最小值
print('按列求最小值:np.min(ar, axis=0) = ', np.min(ar, axis=0))  # 按列求最小值
print('按行求最小值:np.min(ar, axis=1) = ', np.min(ar, axis=1))  # 按行求最小值
print('ar.std() = ', ar.std())  # 求标准差
print('按列求标准差:np.std(ar, axis=0) = ', np.std(ar, axis=0))  # 按列求标准差
print('按列求标准差:np.std(ar, axis=1) = ', np.std(ar, axis=1))  # 按列求标准差
print('ar.var() = ', ar.var())  # 求方差
print('按列求方差:np.var(ar, axis=0) = ', np.var(ar, axis=0))  # 按列求方差
print('按行求方差:np.var(ar, axis=1) = ', np.var(ar, axis=1))  # 按行求方差
print('ar.sum() = ', ar.sum())  # 求和,np.sum()
print('按列求和:np.sum(ar, axis=0) = ', np.sum(ar, axis=0))  # 求和,np.sum() → axis为0,按列求和
print('按行求和:np.sum(ar, axis=1) = ', np.sum(ar, axis=1))  # 求和,np.sum() → axis为1,按行求和

打印结果:

ar =  [[0 1 2][3 4 5]]
ar.mean() =  2.5
按列求平均值:np.mean(ar, axis=0) =  [1.5 2.5 3.5]
按行求平均值:np.mean(ar, axis=1) =  [1. 4.]
ar.max() =  5
按列求最大值:np.max(ar, axis=0) =  [3 4 5]
按行求最大值:np.max(ar, axis=1) =  [2 5]
ar.min() =  0
按列求最小值:np.min(ar, axis=0) =  [0 1 2]
按行求最小值:np.min(ar, axis=1) =  [0 3]
ar.std() =  1.707825127659933
按列求标准差:np.std(ar, axis=0) =  [1.5 1.5 1.5]
按列求标准差:np.std(ar, axis=1) =  [0.81649658 0.81649658]
ar.var() =  2.9166666666666665
按列求方差:np.var(ar, axis=0) =  [2.25 2.25 2.25]
按行求方差:np.var(ar, axis=1) =  [0.66666667 0.66666667]
ar.sum() =  15
按列求和:np.sum(ar, axis=0) =  [3 5 7]
按行求和:np.sum(ar, axis=1) =  [ 3 12]

这篇关于NumPy(五):数组统计【平均值:mean()、最大值:max()、最小值:min()、标准差:std()、方差:var()、中位数:median()】【axis=0:按列运算;axis=0:按列】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128699

相关文章

Java 字符数组转字符串的常用方法

《Java字符数组转字符串的常用方法》文章总结了在Java中将字符数组转换为字符串的几种常用方法,包括使用String构造函数、String.valueOf()方法、StringBuilder以及A... 目录1. 使用String构造函数1.1 基本转换方法1.2 注意事项2. 使用String.valu

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

JAVA中整型数组、字符串数组、整型数和字符串 的创建与转换的方法

《JAVA中整型数组、字符串数组、整型数和字符串的创建与转换的方法》本文介绍了Java中字符串、字符数组和整型数组的创建方法,以及它们之间的转换方法,还详细讲解了字符串中的一些常用方法,如index... 目录一、字符串、字符数组和整型数组的创建1、字符串的创建方法1.1 通过引用字符数组来创建字符串1.2

opencv实现像素统计的示例代码

《opencv实现像素统计的示例代码》本文介绍了OpenCV中统计图像像素信息的常用方法和函数,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 统计像素值的基本信息2. 统计像素值的直方图3. 统计像素值的总和4. 统计非零像素的数量

如何使用 Bash 脚本中的time命令来统计命令执行时间(中英双语)

《如何使用Bash脚本中的time命令来统计命令执行时间(中英双语)》本文介绍了如何在Bash脚本中使用`time`命令来测量命令执行时间,包括`real`、`user`和`sys`三个时间指标,... 使用 Bash 脚本中的 time 命令来统计命令执行时间在日常的开发和运维过程中,性能监控和优化是不

vue如何监听对象或者数组某个属性的变化详解

《vue如何监听对象或者数组某个属性的变化详解》这篇文章主要给大家介绍了关于vue如何监听对象或者数组某个属性的变化,在Vue.js中可以通过watch监听属性变化并动态修改其他属性的值,watch通... 目录前言用watch监听深度监听使用计算属性watch和计算属性的区别在vue 3中使用watchE

C++11的函数包装器std::function使用示例

《C++11的函数包装器std::function使用示例》C++11引入的std::function是最常用的函数包装器,它可以存储任何可调用对象并提供统一的调用接口,以下是关于函数包装器的详细讲解... 目录一、std::function 的基本用法1. 基本语法二、如何使用 std::function

hdu1496(用hash思想统计数目)

作为一个刚学hash的孩子,感觉这道题目很不错,灵活的运用的数组的下标。 解题步骤:如果用常规方法解,那么时间复杂度为O(n^4),肯定会超时,然后参考了网上的解题方法,将等式分成两个部分,a*x1^2+b*x2^2和c*x3^2+d*x4^2, 各自作为数组的下标,如果两部分相加为0,则满足等式; 代码如下: #include<iostream>#include<algorithm

hdu2241(二分+合并数组)

题意:判断是否存在a+b+c = x,a,b,c分别属于集合A,B,C 如果用暴力会超时,所以这里用到了数组合并,将b,c数组合并成d,d数组存的是b,c数组元素的和,然后对d数组进行二分就可以了 代码如下(附注释): #include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<que

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi