[训练测试过程记录]Faster-RCNN用于场景文字检测

2024-09-02 01:32

本文主要是介绍[训练测试过程记录]Faster-RCNN用于场景文字检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

写在前面:github上面的Text-Detection-with-FRCN项目是基于py-faster-rcnn项目在场景文字识别领域的扩展。

和py-faster-rcnn相比,该项目的主要改动为:将检测类别换成了背景和文字,并且更改了数据集。

对于初学者而言,要实现一个自己的baseline,第一步可以尝试训练别人已经实现了的网络,看看整个的运行流程是怎么样的。那么,接下来,我就记录一下我自己在训练和测试过程中遇到的问题。大家在参考的时候可以参照Text-Detection-with-FRCN项目中的README.md文件。

一.编译部分

在编译caffe的时候,可能会遇到一些问题,这里,我来介绍一下我遇到的问题。

1.Makefile.config.example文件修改问题

切换到caffe目录:cd $Text-Detection-with-FRCN/py-faster-rcnn/caffe-fast-rcnn

修改Makefile.config.example文件:

(1)去掉USE_CUDNN := 1的注释

# cuDNN acceleration switch (uncomment to build with cuDNN).
USE_CUDNN := 1

(2)去掉WITH_PYTHON_LAYER := 1的注释

# Uncomment to support layers written in Python (will link against Python libs)
WITH_PYTHON_LAYER := 1


2.CUDNN版本问题

在上一步中,修改了Makefile.config.example问题,再执行如下指令:

cp Makefile.config.example Makefile.config

make -16 && make pycaffe

在make的过程中,可能出现由于CUDNN版本问题导致的错误:

In file included from ./include/caffe/util/device_alternate.hpp:40:0,  from ./include/caffe/common.hpp:19,  from src/caffe/common.cpp:7:  ./include/caffe/util/cudnn.hpp: In function ‘void caffe::cudnn::createPoolingDesc(cudnnPoolingStruct**, caffe::PoolingParameter_PoolMethod, cudnnPoolingMode_t*, int, int, int, int, int, int)’:  ./include/caffe/util/cudnn.hpp:127:41: error: too few arguments to function ‘cudnnStatus_t cudnnSetPooling2dDescriptor(cudnnPoolingDescriptor_t, cudnnPoolingMode_t, cudnnNanPropagation_t, int, int, int, int, int, int)’  pad_h, pad_w, stride_h, stride_w));  ^  ./include/caffe/util/cudnn.hpp:15:28: note: in definition of macro ‘CUDNN_CHECK’  cudnnStatus_t status = condition; \  ^  In file included from ./include/caffe/util/cudnn.hpp:5:0,  from ./include/caffe/util/device_alternate.hpp:40,  from ./include/caffe/common.hpp:19,  from src/caffe/common.cpp:7:  /usr/local/cuda-7.5//include/cudnn.h:803:27: note: declared here  cudnnStatus_t CUDNNWINAPI cudnnSetPooling2dDescriptor(  ^  make: *** [.build_release/src/caffe/common.o] Error 1  

这是由于当前版本的caffe的cudnn实现与系统所安装的cudnn的版本不一致引起的。

解决办法:

下载最新版的caffe

1)将./include/caffe/util/cudnn.hpp换成最新版的caffe里的cudnn.hpp;

2)将./include/caffe/layers里面,所有以cudnn开头的文件,都换成最新版的caffe里面相应的同名文件;

3)将./src/caffe/layers里面,所有以cudnn开头的文件,都换成最新版的caffe里面相应的同名文件。

tips:其他部分的以cudnn开头的文件,就不要动了。


二.准备数据集

在Text-Detection-with-FRCN项目的readme中,给出了coco-text数据集的制作方式。下面,就来具体说明。

1.下载数据集

切换目录:cd $Text-Detection-with-FRCN/datasets/script

原指令为:./fetch_dataset.sh coco-text,可能会出现-bash: ./fetch_dataset.sh: Permission denied的错误。

可先运行:chmod +x ./fetch_dataset.sh

再运行: ./fetch_dataset.sh coco-text


下载到的数据集包括:train2014.zip文件和COCO_Text.json,下面,需要将数据进行格式化,与原py-faster-rcnn中的pascal_voc的数据格式进行统一。


2.数据格式化

(1)pascal_voc数据集的格式为:

--Annotations

--*.xml

--JPEGImages

--*.jpg

--ImageSets

--Main

......

图像文件夹(JPEGImages):例如2008_000200.jpg

标记文件夹(Annotations):例如2008_000200.xml

<annotation>

<folder>VOC2012</folder>

<filename>2008_000200.jpg</filename>

<source>

<database>TheVOC2008 Database</database>

<annotation>PASCALVOC2008</annotation>

<image>flickr</image>

</source>

<size>

<width>500</width>

<height>375</height>

<depth>3</depth>

</size>

<segmented>0</segmented>

<object>

<name>person</name>

<bndbox>

<xmin>119</xmin>

<ymin>76</ymin>

<xmax>184</xmax>

<ymax>311</ymax>

</bndbox>

</object>

......


区分训练样本与测试样本(ImageSets):

test.txt为例:

2008_000001

2008_000004

2008_000005

2008_000006


(2)coco-text的格式为:

图片集:Train2014.zip:COCO_train2014_000000378466.jpg

文件标记:

COCO_Text.json

{"imgs":

{"378466":{"width": 612, "file_name":"COCO_train2014_000000378466.jpg", "set":"train", "id": 378466, "height": 612},

"370250":{"width": 427, "file_name":"COCO_train2014_000000370250.jpg", "set": "test","id": 370250, "height": 640},

"36606":{"width": 640, "file_name":"COCO_train2014_000000036606.jpg", "set": "val","id": 36606, "height": 480}


(3)将coco-text的数据集格式转换为pascal_voc的格式


切换目录:cd $Text-Detection-with-FRCN/datasets/script

运行指令:./format_annotation.py --dataset coco-text


format_annotation.py中:

1.format_coco_text函数,是利用coco-text.json中的信息,生成类似于pascal_voc的ImageSets文件夹中的信息。

2.os.system('./ann2voc2007.sh ' + args.dataset),是调用相同文件夹下面的ann2voc2007.m文件,来生成类似于pascal_voc的Annotations文件夹中的信息。


如果不想花时间安装matlib,可以将ann2voc2007.m改写为python文件,效果是一样的。


改写后的代码如下:(具体原理可参考:利用python生成xml文件)

#coding:utf-8
from PIL import Image
from xml.dom.minidom import Document
import osdef main():imgpath = 'JPEGImages/'txtpath = 'images.annotations'xmlpath_new = 'Annotations/'coco = {}# 得到图像的标注信息file_object = open(txtpath,'rU')try: for line in file_object:line = line.rstrip('\n')strs = line.split(' ')print strs[0]foldername = 'VOC2007'# 用xml替换jpg,得到同名文件xmlname = strs[0].replace('.jpg','.xml')info = Image.open(imgpath + strs[0])# read image size(width,height) = info.sizestrs[2] = max(int(strs[2]), 1)strs[3] = max(int(strs[3]), 1)strs[4] = min(int(strs[4]), width);strs[5] = min(int(strs[5]), height);# 过滤异常if strs[2] >= strs[4] or strs[3] >= strs[5] or strs[2] <=0 or strs[3] <= 0 or strs[4] > width or strs[5] > height:continueif os.path.exists(imgpath + strs[0]):if xmlname in coco:Createnode = coco[xmlname]object_node = Createnode.createElement('object')Root = Createnode.getElementsByTagName('annotation')[0]Root.appendChild(object_node)node=Createnode.createElement('name')node.appendChild(Createnode.createTextNode(strs[1]))object_node.appendChild(node)node=Createnode.createElement('pose')node.appendChild(Createnode.createTextNode('Unspecified'))object_node.appendChild(node)node=Createnode.createElement('truncated')node.appendChild(Createnode.createTextNode('0'))object_node.appendChild(node)node=Createnode.createElement('difficult')node.appendChild(Createnode.createTextNode('0'))object_node.appendChild(node)bndbox_node=Createnode.createElement('bndbox')object_node.appendChild(bndbox_node)node=Createnode.createElement('xmin')node.appendChild(Createnode.createTextNode(str(strs[2])))bndbox_node.appendChild(node)node=Createnode.createElement('ymin')node.appendChild(Createnode.createTextNode(str(strs[3])))bndbox_node.appendChild(node)node=Createnode.createElement('xmax')node.appendChild(Createnode.createTextNode(str(strs[4])))bndbox_node.appendChild(node)node=Createnode.createElement('ymax')node.appendChild(Createnode.createTextNode(str(strs[5])))bndbox_node.appendChild(node)else:Createnode=Document()  #创建DOM文档对象Root=Createnode.createElement('annotation') #创建根元素Createnode.appendChild(Root)# folderfolder=Createnode.createElement('folder')folder.appendChild(Createnode.createTextNode(foldername))Root.appendChild(folder)# filenamefilename = Createnode.createElement('filename')filename.appendChild(Createnode.createTextNode(strs[0]))Root.appendChild(filename)# sourcesource_node = Createnode.createElement('source')Root.appendChild(source_node)node = Createnode.createElement('database')node.appendChild(Createnode.createTextNode('MS COCO-Text'))source_node.appendChild(node)node = Createnode.createElement('annotation')node.appendChild(Createnode.createTextNode('MS COCO-Text 2014'))source_node.appendChild(node)node=Createnode.createElement('image')node.appendChild(Createnode.createTextNode('NULL'))source_node.appendChild(node)node=Createnode.createElement('flickrid');node.appendChild(Createnode.createTextNode('NULL'));source_node.appendChild(node);# ownerowner_node=Createnode.createElement('owner')Root.appendChild(owner_node)node=Createnode.createElement('flickrid')node.appendChild(Createnode.createTextNode('NULL'))owner_node.appendChild(node)node=Createnode.createElement('name')node.appendChild(Createnode.createTextNode('ligen'))owner_node.appendChild(node)# sizesize_node=Createnode.createElement('size')Root.appendChild(size_node)node=Createnode.createElement('width')node.appendChild(Createnode.createTextNode(str(width)))size_node.appendChild(node)node=Createnode.createElement('height');node.appendChild(Createnode.createTextNode(str(height)))size_node.appendChild(node)node=Createnode.createElement('depth')node.appendChild(Createnode.createTextNode('3'))size_node.appendChild(node)# segmentednode=Createnode.createElement('segmented')node.appendChild(Createnode.createTextNode('0'))Root.appendChild(node)# objectobject_node=Createnode.createElement('object')Root.appendChild(object_node)node=Createnode.createElement('name')node.appendChild(Createnode.createTextNode(strs[1]))object_node.appendChild(node)node=Createnode.createElement('pose')node.appendChild(Createnode.createTextNode('Unspecified'))object_node.appendChild(node)node=Createnode.createElement('truncated')node.appendChild(Createnode.createTextNode('0'))object_node.appendChild(node)node=Createnode.createElement('difficult')node.appendChild(Createnode.createTextNode('0'))object_node.appendChild(node)bndbox_node=Createnode.createElement('bndbox')object_node.appendChild(bndbox_node)node=Createnode.createElement('xmin')node.appendChild(Createnode.createTextNode(str(strs[2])))bndbox_node.appendChild(node)node=Createnode.createElement('ymin')node.appendChild(Createnode.createTextNode(str(strs[3])))bndbox_node.appendChild(node)node=Createnode.createElement('xmax')node.appendChild(Createnode.createTextNode(str(strs[4])))bndbox_node.appendChild(node)node=Createnode.createElement('ymax')node.appendChild(Createnode.createTextNode(str(strs[5])))bndbox_node.appendChild(node)coco[xmlname] = Createnodefinally:file_object.close()print 'begin load xml...'for key in coco:print keyf = open(xmlpath_new + key,'w')f.write(coco[key].toprettyxml(indent = '\t'))f.close()if __name__ == "__main__":main()


最后,再运行rm_headline.sh。就得到我们所需要的数据集。

我得到的文件目录如下:


在Annotations的目录下,


在JPEGImages的目录下,


在ImageSets的目录下,


以train.txt为例,包含的内容为:

COCO_train2014_000000351622
COCO_train2014_000000058397
COCO_train2014_000000282380
COCO_train2014_000000223830
......

均为文件名


3.创建软链接

软链接就是:ln -s  源文件 目标文件

在代码中给出的数据集的目录为:train_data

因此,需要将上面得到的coco-text的目录链接到train_data上。

在github的readme中,给出的软链接操作为:

# link your data folder to train_data
cd $Text-Detection-with-FRCN/datasets/
ln -s train_data coco-text    # $YOUR_DATA
但是在我实际操作的时候,是需要:

ln -s coco-text train_data 的。


三.下载预训练模型

首先,下载在imagenet上面预先训练好的模型。

# finetune on this model, you can also use one model you train before
cd $Text-Detection-with-FRCN/py-faster-rcnn
./data/scripts/fetch_imagenet_models.sh
# download it takes long!
可能由于这个项目clone “py-faster-rcnn” 的时间比较早,这里面/data/scripts文件夹下面,fetch_imagenet_models.sh中的下载url已经不能用了。该文件夹下面的其他.sh文件中的url应该也都失效了。

新的py-faster-rcnn中已经对此做了更正。fetch_imagenet_models.sh中的url可改为:

......
6 FILE=imagenet_models.tgz
7 URL=https://dl.dropbox.com/s/gstw7122padlf0l/imagenet_models.tgz?dl=0
8 CHECKSUM=ed34ca912d6782edfb673a8c3a0bda6d
.....

具体更改位置为第8行。

注意:下载需要翻墙。


三.开始训练

切换目录:

cd $Text-Detection-with-FRCN/py-faster-rcnn/

运行指令:

./experiments/scripts/faster_rcnn_end2end.sh 0 VGG16 pascal_voc

需要注意的是:在运行指令的时候,需要切换到指定的目录。

运行的时候,可能会保错:

1)TypeError: 'numpy.float64' object cannot be interpreted as an index


2)TypeError: slice indices must be integers or None or have an index method

这两个问题的出现,都是由于Numpy的版本问题。在numpy 1.12.0中,不支持float index。类似于x[1.0, 3.0],会被看作无效。

解决这个问题,有如下可能的解决办法:

1.对numpy进行降级

sudo pip install -U numpy==1.11.0

但是这种做法,可能会引入新的错误:

ImportError: numpy.core.multiarray failed to import 

解决这个问题是要升级numpy ,于是又升回去:pip install -U numpy 

所以,只能逐个将float类型转换为int类型

2.目前发现的几处需要进行修改的地方:

1.添加astype(np.int)

lib/roi_data_layer/minibatch.py line 26:将fg_rois_per_image = np.round(cfg.TRAIN.FG_FRACTION * rois_per_image)

改为:fg_rois_per_image = np.round(cfg.TRAIN.FG_FRACTION * rois_per_image).astype(np.int)

同理,其他需要在末尾添加.astype(np.int) 的地方:

lib/datasets/ds_utils.py line 12 : hashes = np.round(boxes * scale).dot(v)

lib/fast_rcnn/test.py line 129 : hashes = np.round(blobs['rois'] * cfg.DEDUP_BOXES).dot(v)

lib/rpn/proposal_target_layer.py line 60 : fg_rois_per_image = np.round(cfg.TRAIN.FG_FRACTION * rois_per_image)

2.强制转化为int类型

lib/roi_data_layer/minibatch.py line173:将cls = clss[ind] 改为:cls = int(clss[ind])

lib/rpn/proposal_target_layer.py line 124:将cls = clss[ind] 改为:cls = int(clss[ind])

四.训练模型

当解决了上面所有的问题,我们就可以开始训练了。

具体训练过程:

1.创建输入层

layer_factory.hpp:77 Creatinglayer input-data

net.cpp:106 CreatingLayer input-data

net.cpp:411 input-data-> data

net.cpp:411 input-data-> im_info

net.cpp:411 input-data-> gt_boxes

net.cpp:150 Settingup input-data

net.cpp:157 Topshape: 1 3 600 1000 (1800000)

net.cpp:157 Topshape: 1 3 (3)

net.cpp:157 Topshape: 1 4 (4)

net.cpp:165 Memoryrequired for data: 7200028

............


2.创建卷积层

layer_factory.hpp:77 Creatinglayer conv1_1

net.cpp:106 CreatingLayer conv1_1

net.cpp:454 conv1_1<- data_input-data_0_split_0

net.cpp:411 conv1_1-> conv1_1

net.cpp:150 Settingup conv1_1

net.cpp:157 Topshape: 1 64 600 1000 (38400000)

net.cpp:165 Memoryrequired for data: 175200084

............


3.创建激活层

layer_factory.hpp:77 Creatinglayer relu1_1

net.cpp:106 CreatingLayer relu1_1

net.cpp:454 relu1_1<- conv1_1

net.cpp:397 relu1_1-> conv1_1 (in-place)

net.cpp:150 Settingup relu1_1

net.cpp:157 Topshape: 1 64 600 1000 (38400000)

net.cpp:165 Memoryrequired for data: 328800084

............


判断是否需要反向计算(back forward)

部分需要反向计算:

net.cpp:226 loss_bboxneeds backward computation.

loss_clsneeds backward computation.

bbox_predneeds backward computation.

cls_scoreneeds backward computation.

fc7_drop7_0_splitneeds backward computation.

............


部分不需要反向计算:

net.cpp:228pool2does not need backward computation.

relu2_2does not need backward computation.

conv2_2does not need backward computation.

relu2_1does not need backward computation.

conv2_1does not need backward computation.

input-datadoes not need backward computation.

............


整个网络初始化完毕:

net.cpp:270 Thisnetwork produces output loss_bbox

Thisnetwork produces output loss_cls

Thisnetwork produces output rpn_cls_loss

Thisnetwork produces output rpn_loss_bbox

Networkinitialization done.

solver.cpp:60 Solverscaffolding done.


开始迭代,输出结果:

solver.cpp:229 Iteration0, loss = 1.98441

solver.cpp:245

Trainnet output #0: loss_bbox = 0.00188451 (* 1 = 0.00188451 loss)

Trainnet output #1: loss_cls = 0.484446 (* 1 = 0.484446 loss)

Trainnet output #2: rpn_cls_loss = 0.766564 (* 1 = 0.766564 loss)

Trainnet output #3: rpn_loss_bbox = 0.484638 (* 1 = 0.484638 loss)

sgd_solver.cpp:106Iteration0, lr = 0.001


solver.cpp:229 Iteration20, loss = 1.58353

solver.cpp:245

Trainnet output #0: loss_bbox = 0.00184912 (* 1 = 0.00184912 loss)

Trainnet output #1: loss_cls = 0.213403 (* 1 = 0.213403 loss)

Trainnet output #2: rpn_cls_loss = 0.444577 (* 1 = 0.444577 loss)

Trainnet output #3: rpn_loss_bbox = 0.818097 (* 1 = 0.818097 loss)

sgd_solver.cpp:106:Iteration20, lr = 0.001


.......


solver.cpp:229 Iteration69980, loss =0.374131

solver.cpp:245

Trainnet output #0: loss_bbox =0.00462239 (* 1 =0.00462239 loss)

Trainnet output #1: loss_cls =0.00527413 (* 1 =0.00527413 loss)

Trainnet output #2: rpn_cls_loss =0.0607663 (* 1 =0.0607663 loss)

Trainnet output #3: rpn_loss_bbox =0.139714 (* 1 =0.139714 loss)

sgd_solver.cpp:106:Iteration69980, lr = 0.001



real 681m44.284s
user 565m0.152s
sys 115m29.578s


生成的模型

保存在:

/Text-Detection-with-FRCN/py-faster-rcnn/output/faster_rcnn_end2end/voc_2007_trainval文件夹中。

vgg16_faster_rcnn_iter_*.caffemodel中,其中*为迭代次数

每迭代10000次,生成一个模型。迭代了70000次,共生成了7个模型。


五.测试模型

实际上,在./experiments/scripts/faster_rcnn_end2end.sh 中,训练完毕后会对模型进行测试。

那么,怎样单独执行测试呢?

切换目录:

cd $Text-Detection-with-FRCN/py-faster-rcnn/

运行指令:

tools/test_net.py --gpu 0

 --def models/coco_text/VGG16/faster_rcnn_end2end/test.prototxt \

--netoutput/faster_rcnn_end2end/voc_2007_trainval/vgg16_faster_rcnn_iter_70000.caffemodel\

--imdb voc_2007_test\

--cfg experiments/cfgs/faster_rcnn_end2end.yml \


1.运行可能出现的错误:

File "/Text-Detection-with-FRCN/py-faster-rcnn/tools/../lib/datasets/voc_eval.py", line 23, in parse_rec
    obj_struct['bbox'] = [int(bbox.find('xmin').text),
ValueError: invalid literal for int() with base 10: '391.0'

解决方案:改为:

obj_struct['bbox'] = [int(float(bbox.find('xmin').text)),
                              int(float(bbox.find('ymin').text)),
                              int(float(bbox.find('xmax').text)),
                              int(float(bbox.find('ymax').text))]


2.测试运行结果:

对于vgg16_faster_rcnn_iter_70000.caffemodel:

AP for text = 0.3422
Mean AP = 0.3422
~~~~~~~~
Results:
0.342
0.342
~~~~~~~~


对于github中已经训练好的vgg16_faster_rcnn_fine_tune_on_coco.caffemodel

AP for text = 0.1013
Mean AP = 0.1013
~~~~~~~~
Results:
0.101
0.101
~~~~~~~~

3.运行demo

在/Text-Detection-with-FRCN/script目录下,有text_detect_demo.sh文件:

./py-faster-rcnn/tools/text_detect_demo.py \
--gpu 0 \
--net models/deploy.prototxt \
--model models/vgg16_faster_rcnn_fine_tune_on_coco.caffemodel \
--dataset datasets/test


通过修改其中的model,来指定模型。

运行demo得到的结果:

左边:vgg16_faster_rcnn_iter_70000.caffemodel的测试结果,右边:github中已经训练好的vgg16_faster_rcnn_fine_tune_on_coco.caffemodel的测试结果。





这篇关于[训练测试过程记录]Faster-RCNN用于场景文字检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128618

相关文章

浅析Spring Security认证过程

类图 为了方便理解Spring Security认证流程,特意画了如下的类图,包含相关的核心认证类 概述 核心验证器 AuthenticationManager 该对象提供了认证方法的入口,接收一个Authentiaton对象作为参数; public interface AuthenticationManager {Authentication authenticate(Authenti

性能测试介绍

性能测试是一种测试方法,旨在评估系统、应用程序或组件在现实场景中的性能表现和可靠性。它通常用于衡量系统在不同负载条件下的响应时间、吞吐量、资源利用率、稳定性和可扩展性等关键指标。 为什么要进行性能测试 通过性能测试,可以确定系统是否能够满足预期的性能要求,找出性能瓶颈和潜在的问题,并进行优化和调整。 发现性能瓶颈:性能测试可以帮助发现系统的性能瓶颈,即系统在高负载或高并发情况下可能出现的问题

Hadoop企业开发案例调优场景

需求 (1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。 (2)需求分析: 1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster 平均每个节点运行10个 / 3台 ≈ 3个任务(4    3    3) HDFS参数调优 (1)修改:hadoop-env.sh export HDFS_NAMENOD

作业提交过程之HDFSMapReduce

作业提交全过程详解 (1)作业提交 第1步:Client调用job.waitForCompletion方法,向整个集群提交MapReduce作业。 第2步:Client向RM申请一个作业id。 第3步:RM给Client返回该job资源的提交路径和作业id。 第4步:Client提交jar包、切片信息和配置文件到指定的资源提交路径。 第5步:Client提交完资源后,向RM申请运行MrAp

字节面试 | 如何测试RocketMQ、RocketMQ?

字节面试:RocketMQ是怎么测试的呢? 答: 首先保证消息的消费正确、设计逆向用例,在验证消息内容为空等情况时的消费正确性; 推送大批量MQ,通过Admin控制台查看MQ消费的情况,是否出现消费假死、TPS是否正常等等问题。(上述都是临场发挥,但是RocketMQ真正的测试点,还真的需要探讨) 01 先了解RocketMQ 作为测试也是要简单了解RocketMQ。简单来说,就是一个分

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

高效录音转文字:2024年四大工具精选!

在快节奏的工作生活中,能够快速将录音转换成文字是一项非常实用的能力。特别是在需要记录会议纪要、讲座内容或者是采访素材的时候,一款优秀的在线录音转文字工具能派上大用场。以下推荐几个好用的录音转文字工具! 365在线转文字 直达链接:https://www.pdf365.cn/ 365在线转文字是一款提供在线录音转文字服务的工具,它以其高效、便捷的特点受到用户的青睐。用户无需下载安装任何软件,只

【测试】输入正确用户名和密码,点击登录没有响应的可能性原因

目录 一、前端问题 1. 界面交互问题 2. 输入数据校验问题 二、网络问题 1. 网络连接中断 2. 代理设置问题 三、后端问题 1. 服务器故障 2. 数据库问题 3. 权限问题: 四、其他问题 1. 缓存问题 2. 第三方服务问题 3. 配置问题 一、前端问题 1. 界面交互问题 登录按钮的点击事件未正确绑定,导致点击后无法触发登录操作。 页面可能存在

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

业务中14个需要进行A/B测试的时刻[信息图]

在本指南中,我们将全面了解有关 A/B测试 的所有内容。 我们将介绍不同类型的A/B测试,如何有效地规划和启动测试,如何评估测试是否成功,您应该关注哪些指标,多年来我们发现的常见错误等等。 什么是A/B测试? A/B测试(有时称为“分割测试”)是一种实验类型,其中您创建两种或多种内容变体——如登录页面、电子邮件或广告——并将它们显示给不同的受众群体,以查看哪一种效果最好。 本质上,A/B测