[训练测试过程记录]Faster-RCNN用于场景文字检测

2024-09-02 01:32

本文主要是介绍[训练测试过程记录]Faster-RCNN用于场景文字检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

写在前面:github上面的Text-Detection-with-FRCN项目是基于py-faster-rcnn项目在场景文字识别领域的扩展。

和py-faster-rcnn相比,该项目的主要改动为:将检测类别换成了背景和文字,并且更改了数据集。

对于初学者而言,要实现一个自己的baseline,第一步可以尝试训练别人已经实现了的网络,看看整个的运行流程是怎么样的。那么,接下来,我就记录一下我自己在训练和测试过程中遇到的问题。大家在参考的时候可以参照Text-Detection-with-FRCN项目中的README.md文件。

一.编译部分

在编译caffe的时候,可能会遇到一些问题,这里,我来介绍一下我遇到的问题。

1.Makefile.config.example文件修改问题

切换到caffe目录:cd $Text-Detection-with-FRCN/py-faster-rcnn/caffe-fast-rcnn

修改Makefile.config.example文件:

(1)去掉USE_CUDNN := 1的注释

# cuDNN acceleration switch (uncomment to build with cuDNN).
USE_CUDNN := 1

(2)去掉WITH_PYTHON_LAYER := 1的注释

# Uncomment to support layers written in Python (will link against Python libs)
WITH_PYTHON_LAYER := 1


2.CUDNN版本问题

在上一步中,修改了Makefile.config.example问题,再执行如下指令:

cp Makefile.config.example Makefile.config

make -16 && make pycaffe

在make的过程中,可能出现由于CUDNN版本问题导致的错误:

In file included from ./include/caffe/util/device_alternate.hpp:40:0,  from ./include/caffe/common.hpp:19,  from src/caffe/common.cpp:7:  ./include/caffe/util/cudnn.hpp: In function ‘void caffe::cudnn::createPoolingDesc(cudnnPoolingStruct**, caffe::PoolingParameter_PoolMethod, cudnnPoolingMode_t*, int, int, int, int, int, int)’:  ./include/caffe/util/cudnn.hpp:127:41: error: too few arguments to function ‘cudnnStatus_t cudnnSetPooling2dDescriptor(cudnnPoolingDescriptor_t, cudnnPoolingMode_t, cudnnNanPropagation_t, int, int, int, int, int, int)’  pad_h, pad_w, stride_h, stride_w));  ^  ./include/caffe/util/cudnn.hpp:15:28: note: in definition of macro ‘CUDNN_CHECK’  cudnnStatus_t status = condition; \  ^  In file included from ./include/caffe/util/cudnn.hpp:5:0,  from ./include/caffe/util/device_alternate.hpp:40,  from ./include/caffe/common.hpp:19,  from src/caffe/common.cpp:7:  /usr/local/cuda-7.5//include/cudnn.h:803:27: note: declared here  cudnnStatus_t CUDNNWINAPI cudnnSetPooling2dDescriptor(  ^  make: *** [.build_release/src/caffe/common.o] Error 1  

这是由于当前版本的caffe的cudnn实现与系统所安装的cudnn的版本不一致引起的。

解决办法:

下载最新版的caffe

1)将./include/caffe/util/cudnn.hpp换成最新版的caffe里的cudnn.hpp;

2)将./include/caffe/layers里面,所有以cudnn开头的文件,都换成最新版的caffe里面相应的同名文件;

3)将./src/caffe/layers里面,所有以cudnn开头的文件,都换成最新版的caffe里面相应的同名文件。

tips:其他部分的以cudnn开头的文件,就不要动了。


二.准备数据集

在Text-Detection-with-FRCN项目的readme中,给出了coco-text数据集的制作方式。下面,就来具体说明。

1.下载数据集

切换目录:cd $Text-Detection-with-FRCN/datasets/script

原指令为:./fetch_dataset.sh coco-text,可能会出现-bash: ./fetch_dataset.sh: Permission denied的错误。

可先运行:chmod +x ./fetch_dataset.sh

再运行: ./fetch_dataset.sh coco-text


下载到的数据集包括:train2014.zip文件和COCO_Text.json,下面,需要将数据进行格式化,与原py-faster-rcnn中的pascal_voc的数据格式进行统一。


2.数据格式化

(1)pascal_voc数据集的格式为:

--Annotations

--*.xml

--JPEGImages

--*.jpg

--ImageSets

--Main

......

图像文件夹(JPEGImages):例如2008_000200.jpg

标记文件夹(Annotations):例如2008_000200.xml

<annotation>

<folder>VOC2012</folder>

<filename>2008_000200.jpg</filename>

<source>

<database>TheVOC2008 Database</database>

<annotation>PASCALVOC2008</annotation>

<image>flickr</image>

</source>

<size>

<width>500</width>

<height>375</height>

<depth>3</depth>

</size>

<segmented>0</segmented>

<object>

<name>person</name>

<bndbox>

<xmin>119</xmin>

<ymin>76</ymin>

<xmax>184</xmax>

<ymax>311</ymax>

</bndbox>

</object>

......


区分训练样本与测试样本(ImageSets):

test.txt为例:

2008_000001

2008_000004

2008_000005

2008_000006


(2)coco-text的格式为:

图片集:Train2014.zip:COCO_train2014_000000378466.jpg

文件标记:

COCO_Text.json

{"imgs":

{"378466":{"width": 612, "file_name":"COCO_train2014_000000378466.jpg", "set":"train", "id": 378466, "height": 612},

"370250":{"width": 427, "file_name":"COCO_train2014_000000370250.jpg", "set": "test","id": 370250, "height": 640},

"36606":{"width": 640, "file_name":"COCO_train2014_000000036606.jpg", "set": "val","id": 36606, "height": 480}


(3)将coco-text的数据集格式转换为pascal_voc的格式


切换目录:cd $Text-Detection-with-FRCN/datasets/script

运行指令:./format_annotation.py --dataset coco-text


format_annotation.py中:

1.format_coco_text函数,是利用coco-text.json中的信息,生成类似于pascal_voc的ImageSets文件夹中的信息。

2.os.system('./ann2voc2007.sh ' + args.dataset),是调用相同文件夹下面的ann2voc2007.m文件,来生成类似于pascal_voc的Annotations文件夹中的信息。


如果不想花时间安装matlib,可以将ann2voc2007.m改写为python文件,效果是一样的。


改写后的代码如下:(具体原理可参考:利用python生成xml文件)

#coding:utf-8
from PIL import Image
from xml.dom.minidom import Document
import osdef main():imgpath = 'JPEGImages/'txtpath = 'images.annotations'xmlpath_new = 'Annotations/'coco = {}# 得到图像的标注信息file_object = open(txtpath,'rU')try: for line in file_object:line = line.rstrip('\n')strs = line.split(' ')print strs[0]foldername = 'VOC2007'# 用xml替换jpg,得到同名文件xmlname = strs[0].replace('.jpg','.xml')info = Image.open(imgpath + strs[0])# read image size(width,height) = info.sizestrs[2] = max(int(strs[2]), 1)strs[3] = max(int(strs[3]), 1)strs[4] = min(int(strs[4]), width);strs[5] = min(int(strs[5]), height);# 过滤异常if strs[2] >= strs[4] or strs[3] >= strs[5] or strs[2] <=0 or strs[3] <= 0 or strs[4] > width or strs[5] > height:continueif os.path.exists(imgpath + strs[0]):if xmlname in coco:Createnode = coco[xmlname]object_node = Createnode.createElement('object')Root = Createnode.getElementsByTagName('annotation')[0]Root.appendChild(object_node)node=Createnode.createElement('name')node.appendChild(Createnode.createTextNode(strs[1]))object_node.appendChild(node)node=Createnode.createElement('pose')node.appendChild(Createnode.createTextNode('Unspecified'))object_node.appendChild(node)node=Createnode.createElement('truncated')node.appendChild(Createnode.createTextNode('0'))object_node.appendChild(node)node=Createnode.createElement('difficult')node.appendChild(Createnode.createTextNode('0'))object_node.appendChild(node)bndbox_node=Createnode.createElement('bndbox')object_node.appendChild(bndbox_node)node=Createnode.createElement('xmin')node.appendChild(Createnode.createTextNode(str(strs[2])))bndbox_node.appendChild(node)node=Createnode.createElement('ymin')node.appendChild(Createnode.createTextNode(str(strs[3])))bndbox_node.appendChild(node)node=Createnode.createElement('xmax')node.appendChild(Createnode.createTextNode(str(strs[4])))bndbox_node.appendChild(node)node=Createnode.createElement('ymax')node.appendChild(Createnode.createTextNode(str(strs[5])))bndbox_node.appendChild(node)else:Createnode=Document()  #创建DOM文档对象Root=Createnode.createElement('annotation') #创建根元素Createnode.appendChild(Root)# folderfolder=Createnode.createElement('folder')folder.appendChild(Createnode.createTextNode(foldername))Root.appendChild(folder)# filenamefilename = Createnode.createElement('filename')filename.appendChild(Createnode.createTextNode(strs[0]))Root.appendChild(filename)# sourcesource_node = Createnode.createElement('source')Root.appendChild(source_node)node = Createnode.createElement('database')node.appendChild(Createnode.createTextNode('MS COCO-Text'))source_node.appendChild(node)node = Createnode.createElement('annotation')node.appendChild(Createnode.createTextNode('MS COCO-Text 2014'))source_node.appendChild(node)node=Createnode.createElement('image')node.appendChild(Createnode.createTextNode('NULL'))source_node.appendChild(node)node=Createnode.createElement('flickrid');node.appendChild(Createnode.createTextNode('NULL'));source_node.appendChild(node);# ownerowner_node=Createnode.createElement('owner')Root.appendChild(owner_node)node=Createnode.createElement('flickrid')node.appendChild(Createnode.createTextNode('NULL'))owner_node.appendChild(node)node=Createnode.createElement('name')node.appendChild(Createnode.createTextNode('ligen'))owner_node.appendChild(node)# sizesize_node=Createnode.createElement('size')Root.appendChild(size_node)node=Createnode.createElement('width')node.appendChild(Createnode.createTextNode(str(width)))size_node.appendChild(node)node=Createnode.createElement('height');node.appendChild(Createnode.createTextNode(str(height)))size_node.appendChild(node)node=Createnode.createElement('depth')node.appendChild(Createnode.createTextNode('3'))size_node.appendChild(node)# segmentednode=Createnode.createElement('segmented')node.appendChild(Createnode.createTextNode('0'))Root.appendChild(node)# objectobject_node=Createnode.createElement('object')Root.appendChild(object_node)node=Createnode.createElement('name')node.appendChild(Createnode.createTextNode(strs[1]))object_node.appendChild(node)node=Createnode.createElement('pose')node.appendChild(Createnode.createTextNode('Unspecified'))object_node.appendChild(node)node=Createnode.createElement('truncated')node.appendChild(Createnode.createTextNode('0'))object_node.appendChild(node)node=Createnode.createElement('difficult')node.appendChild(Createnode.createTextNode('0'))object_node.appendChild(node)bndbox_node=Createnode.createElement('bndbox')object_node.appendChild(bndbox_node)node=Createnode.createElement('xmin')node.appendChild(Createnode.createTextNode(str(strs[2])))bndbox_node.appendChild(node)node=Createnode.createElement('ymin')node.appendChild(Createnode.createTextNode(str(strs[3])))bndbox_node.appendChild(node)node=Createnode.createElement('xmax')node.appendChild(Createnode.createTextNode(str(strs[4])))bndbox_node.appendChild(node)node=Createnode.createElement('ymax')node.appendChild(Createnode.createTextNode(str(strs[5])))bndbox_node.appendChild(node)coco[xmlname] = Createnodefinally:file_object.close()print 'begin load xml...'for key in coco:print keyf = open(xmlpath_new + key,'w')f.write(coco[key].toprettyxml(indent = '\t'))f.close()if __name__ == "__main__":main()


最后,再运行rm_headline.sh。就得到我们所需要的数据集。

我得到的文件目录如下:


在Annotations的目录下,


在JPEGImages的目录下,


在ImageSets的目录下,


以train.txt为例,包含的内容为:

COCO_train2014_000000351622
COCO_train2014_000000058397
COCO_train2014_000000282380
COCO_train2014_000000223830
......

均为文件名


3.创建软链接

软链接就是:ln -s  源文件 目标文件

在代码中给出的数据集的目录为:train_data

因此,需要将上面得到的coco-text的目录链接到train_data上。

在github的readme中,给出的软链接操作为:

# link your data folder to train_data
cd $Text-Detection-with-FRCN/datasets/
ln -s train_data coco-text    # $YOUR_DATA
但是在我实际操作的时候,是需要:

ln -s coco-text train_data 的。


三.下载预训练模型

首先,下载在imagenet上面预先训练好的模型。

# finetune on this model, you can also use one model you train before
cd $Text-Detection-with-FRCN/py-faster-rcnn
./data/scripts/fetch_imagenet_models.sh
# download it takes long!
可能由于这个项目clone “py-faster-rcnn” 的时间比较早,这里面/data/scripts文件夹下面,fetch_imagenet_models.sh中的下载url已经不能用了。该文件夹下面的其他.sh文件中的url应该也都失效了。

新的py-faster-rcnn中已经对此做了更正。fetch_imagenet_models.sh中的url可改为:

......
6 FILE=imagenet_models.tgz
7 URL=https://dl.dropbox.com/s/gstw7122padlf0l/imagenet_models.tgz?dl=0
8 CHECKSUM=ed34ca912d6782edfb673a8c3a0bda6d
.....

具体更改位置为第8行。

注意:下载需要翻墙。


三.开始训练

切换目录:

cd $Text-Detection-with-FRCN/py-faster-rcnn/

运行指令:

./experiments/scripts/faster_rcnn_end2end.sh 0 VGG16 pascal_voc

需要注意的是:在运行指令的时候,需要切换到指定的目录。

运行的时候,可能会保错:

1)TypeError: 'numpy.float64' object cannot be interpreted as an index


2)TypeError: slice indices must be integers or None or have an index method

这两个问题的出现,都是由于Numpy的版本问题。在numpy 1.12.0中,不支持float index。类似于x[1.0, 3.0],会被看作无效。

解决这个问题,有如下可能的解决办法:

1.对numpy进行降级

sudo pip install -U numpy==1.11.0

但是这种做法,可能会引入新的错误:

ImportError: numpy.core.multiarray failed to import 

解决这个问题是要升级numpy ,于是又升回去:pip install -U numpy 

所以,只能逐个将float类型转换为int类型

2.目前发现的几处需要进行修改的地方:

1.添加astype(np.int)

lib/roi_data_layer/minibatch.py line 26:将fg_rois_per_image = np.round(cfg.TRAIN.FG_FRACTION * rois_per_image)

改为:fg_rois_per_image = np.round(cfg.TRAIN.FG_FRACTION * rois_per_image).astype(np.int)

同理,其他需要在末尾添加.astype(np.int) 的地方:

lib/datasets/ds_utils.py line 12 : hashes = np.round(boxes * scale).dot(v)

lib/fast_rcnn/test.py line 129 : hashes = np.round(blobs['rois'] * cfg.DEDUP_BOXES).dot(v)

lib/rpn/proposal_target_layer.py line 60 : fg_rois_per_image = np.round(cfg.TRAIN.FG_FRACTION * rois_per_image)

2.强制转化为int类型

lib/roi_data_layer/minibatch.py line173:将cls = clss[ind] 改为:cls = int(clss[ind])

lib/rpn/proposal_target_layer.py line 124:将cls = clss[ind] 改为:cls = int(clss[ind])

四.训练模型

当解决了上面所有的问题,我们就可以开始训练了。

具体训练过程:

1.创建输入层

layer_factory.hpp:77 Creatinglayer input-data

net.cpp:106 CreatingLayer input-data

net.cpp:411 input-data-> data

net.cpp:411 input-data-> im_info

net.cpp:411 input-data-> gt_boxes

net.cpp:150 Settingup input-data

net.cpp:157 Topshape: 1 3 600 1000 (1800000)

net.cpp:157 Topshape: 1 3 (3)

net.cpp:157 Topshape: 1 4 (4)

net.cpp:165 Memoryrequired for data: 7200028

............


2.创建卷积层

layer_factory.hpp:77 Creatinglayer conv1_1

net.cpp:106 CreatingLayer conv1_1

net.cpp:454 conv1_1<- data_input-data_0_split_0

net.cpp:411 conv1_1-> conv1_1

net.cpp:150 Settingup conv1_1

net.cpp:157 Topshape: 1 64 600 1000 (38400000)

net.cpp:165 Memoryrequired for data: 175200084

............


3.创建激活层

layer_factory.hpp:77 Creatinglayer relu1_1

net.cpp:106 CreatingLayer relu1_1

net.cpp:454 relu1_1<- conv1_1

net.cpp:397 relu1_1-> conv1_1 (in-place)

net.cpp:150 Settingup relu1_1

net.cpp:157 Topshape: 1 64 600 1000 (38400000)

net.cpp:165 Memoryrequired for data: 328800084

............


判断是否需要反向计算(back forward)

部分需要反向计算:

net.cpp:226 loss_bboxneeds backward computation.

loss_clsneeds backward computation.

bbox_predneeds backward computation.

cls_scoreneeds backward computation.

fc7_drop7_0_splitneeds backward computation.

............


部分不需要反向计算:

net.cpp:228pool2does not need backward computation.

relu2_2does not need backward computation.

conv2_2does not need backward computation.

relu2_1does not need backward computation.

conv2_1does not need backward computation.

input-datadoes not need backward computation.

............


整个网络初始化完毕:

net.cpp:270 Thisnetwork produces output loss_bbox

Thisnetwork produces output loss_cls

Thisnetwork produces output rpn_cls_loss

Thisnetwork produces output rpn_loss_bbox

Networkinitialization done.

solver.cpp:60 Solverscaffolding done.


开始迭代,输出结果:

solver.cpp:229 Iteration0, loss = 1.98441

solver.cpp:245

Trainnet output #0: loss_bbox = 0.00188451 (* 1 = 0.00188451 loss)

Trainnet output #1: loss_cls = 0.484446 (* 1 = 0.484446 loss)

Trainnet output #2: rpn_cls_loss = 0.766564 (* 1 = 0.766564 loss)

Trainnet output #3: rpn_loss_bbox = 0.484638 (* 1 = 0.484638 loss)

sgd_solver.cpp:106Iteration0, lr = 0.001


solver.cpp:229 Iteration20, loss = 1.58353

solver.cpp:245

Trainnet output #0: loss_bbox = 0.00184912 (* 1 = 0.00184912 loss)

Trainnet output #1: loss_cls = 0.213403 (* 1 = 0.213403 loss)

Trainnet output #2: rpn_cls_loss = 0.444577 (* 1 = 0.444577 loss)

Trainnet output #3: rpn_loss_bbox = 0.818097 (* 1 = 0.818097 loss)

sgd_solver.cpp:106:Iteration20, lr = 0.001


.......


solver.cpp:229 Iteration69980, loss =0.374131

solver.cpp:245

Trainnet output #0: loss_bbox =0.00462239 (* 1 =0.00462239 loss)

Trainnet output #1: loss_cls =0.00527413 (* 1 =0.00527413 loss)

Trainnet output #2: rpn_cls_loss =0.0607663 (* 1 =0.0607663 loss)

Trainnet output #3: rpn_loss_bbox =0.139714 (* 1 =0.139714 loss)

sgd_solver.cpp:106:Iteration69980, lr = 0.001



real 681m44.284s
user 565m0.152s
sys 115m29.578s


生成的模型

保存在:

/Text-Detection-with-FRCN/py-faster-rcnn/output/faster_rcnn_end2end/voc_2007_trainval文件夹中。

vgg16_faster_rcnn_iter_*.caffemodel中,其中*为迭代次数

每迭代10000次,生成一个模型。迭代了70000次,共生成了7个模型。


五.测试模型

实际上,在./experiments/scripts/faster_rcnn_end2end.sh 中,训练完毕后会对模型进行测试。

那么,怎样单独执行测试呢?

切换目录:

cd $Text-Detection-with-FRCN/py-faster-rcnn/

运行指令:

tools/test_net.py --gpu 0

 --def models/coco_text/VGG16/faster_rcnn_end2end/test.prototxt \

--netoutput/faster_rcnn_end2end/voc_2007_trainval/vgg16_faster_rcnn_iter_70000.caffemodel\

--imdb voc_2007_test\

--cfg experiments/cfgs/faster_rcnn_end2end.yml \


1.运行可能出现的错误:

File "/Text-Detection-with-FRCN/py-faster-rcnn/tools/../lib/datasets/voc_eval.py", line 23, in parse_rec
    obj_struct['bbox'] = [int(bbox.find('xmin').text),
ValueError: invalid literal for int() with base 10: '391.0'

解决方案:改为:

obj_struct['bbox'] = [int(float(bbox.find('xmin').text)),
                              int(float(bbox.find('ymin').text)),
                              int(float(bbox.find('xmax').text)),
                              int(float(bbox.find('ymax').text))]


2.测试运行结果:

对于vgg16_faster_rcnn_iter_70000.caffemodel:

AP for text = 0.3422
Mean AP = 0.3422
~~~~~~~~
Results:
0.342
0.342
~~~~~~~~


对于github中已经训练好的vgg16_faster_rcnn_fine_tune_on_coco.caffemodel

AP for text = 0.1013
Mean AP = 0.1013
~~~~~~~~
Results:
0.101
0.101
~~~~~~~~

3.运行demo

在/Text-Detection-with-FRCN/script目录下,有text_detect_demo.sh文件:

./py-faster-rcnn/tools/text_detect_demo.py \
--gpu 0 \
--net models/deploy.prototxt \
--model models/vgg16_faster_rcnn_fine_tune_on_coco.caffemodel \
--dataset datasets/test


通过修改其中的model,来指定模型。

运行demo得到的结果:

左边:vgg16_faster_rcnn_iter_70000.caffemodel的测试结果,右边:github中已经训练好的vgg16_faster_rcnn_fine_tune_on_coco.caffemodel的测试结果。





这篇关于[训练测试过程记录]Faster-RCNN用于场景文字检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128618

相关文章

SpringBoot 整合 Grizzly的过程

《SpringBoot整合Grizzly的过程》Grizzly是一个高性能的、异步的、非阻塞的HTTP服务器框架,它可以与SpringBoot一起提供比传统的Tomcat或Jet... 目录为什么选择 Grizzly?Spring Boot + Grizzly 整合的优势添加依赖自定义 Grizzly 作为

mysql-8.0.30压缩包版安装和配置MySQL环境过程

《mysql-8.0.30压缩包版安装和配置MySQL环境过程》该文章介绍了如何在Windows系统中下载、安装和配置MySQL数据库,包括下载地址、解压文件、创建和配置my.ini文件、设置环境变量... 目录压缩包安装配置下载配置环境变量下载和初始化总结压缩包安装配置下载下载地址:https://d

VUE动态绑定class类的三种常用方式及适用场景详解

《VUE动态绑定class类的三种常用方式及适用场景详解》文章介绍了在实际开发中动态绑定class的三种常见情况及其解决方案,包括根据不同的返回值渲染不同的class样式、给模块添加基础样式以及根据设... 目录前言1.动态选择class样式(对象添加:情景一)2.动态添加一个class样式(字符串添加:情

springboot整合gateway的详细过程

《springboot整合gateway的详细过程》本文介绍了如何配置和使用SpringCloudGateway构建一个API网关,通过实例代码介绍了springboot整合gateway的过程,需要... 目录1. 添加依赖2. 配置网关路由3. 启用Eureka客户端(可选)4. 创建主应用类5. 自定

最新版IDEA配置 Tomcat的详细过程

《最新版IDEA配置Tomcat的详细过程》本文介绍如何在IDEA中配置Tomcat服务器,并创建Web项目,首先检查Tomcat是否安装完成,然后在IDEA中创建Web项目并添加Web结构,接着,... 目录配置tomcat第一步,先给项目添加Web结构查看端口号配置tomcat    先检查自己的to

SpringBoot集成SOL链的详细过程

《SpringBoot集成SOL链的详细过程》Solanaj是一个用于与Solana区块链交互的Java库,它为Java开发者提供了一套功能丰富的API,使得在Java环境中可以轻松构建与Solana... 目录一、什么是solanaj?二、Pom依赖三、主要类3.1 RpcClient3.2 Public

Android数据库Room的实际使用过程总结

《Android数据库Room的实际使用过程总结》这篇文章主要给大家介绍了关于Android数据库Room的实际使用过程,详细介绍了如何创建实体类、数据访问对象(DAO)和数据库抽象类,需要的朋友可以... 目录前言一、Room的基本使用1.项目配置2.创建实体类(Entity)3.创建数据访问对象(DAO

Servlet中配置和使用过滤器的步骤记录

《Servlet中配置和使用过滤器的步骤记录》:本文主要介绍在Servlet中配置和使用过滤器的方法,包括创建过滤器类、配置过滤器以及在Web应用中使用过滤器等步骤,文中通过代码介绍的非常详细,需... 目录创建过滤器类配置过滤器使用过滤器总结在Servlet中配置和使用过滤器主要包括创建过滤器类、配置过滤

SpringBoot整合kaptcha验证码过程(复制粘贴即可用)

《SpringBoot整合kaptcha验证码过程(复制粘贴即可用)》本文介绍了如何在SpringBoot项目中整合Kaptcha验证码实现,通过配置和编写相应的Controller、工具类以及前端页... 目录SpringBoot整合kaptcha验证码程序目录参考有两种方式在springboot中使用k

java中VO PO DTO POJO BO DO对象的应用场景及使用方式

《java中VOPODTOPOJOBODO对象的应用场景及使用方式》文章介绍了Java开发中常用的几种对象类型及其应用场景,包括VO、PO、DTO、POJO、BO和DO等,并通过示例说明了它... 目录Java中VO PO DTO POJO BO DO对象的应用VO (View Object) - 视图对象