数学基础 -- 线性代数之共轭转置矩阵

2024-09-01 16:12

本文主要是介绍数学基础 -- 线性代数之共轭转置矩阵,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

共轭转置矩阵

1. 共轭转置矩阵的定义

共轭转置矩阵(Hermitian transpose)是线性代数中的一个重要概念,特别是在处理复数矩阵时经常使用。它的定义包括两个步骤:

  1. 转置:将矩阵的行和列互换。
  2. 共轭:对矩阵中的每个元素取复共轭,即将复数的虚部取负。

数学表达

对于一个 m × n m \times n m×n 的复矩阵 A A A ,其共轭转置矩阵 A † A^{\dagger} A 定义为:

A † = A ˉ T A^{\dagger} = \bar{A}^T A=AˉT

具体来说,对于矩阵 A A A

A = ( a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m n ) A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} A= a11a21am1a12a22am2a1na2namn

其共轭转置矩阵 A † A^{\dagger} A 为:

A † = ( a ˉ 11 a ˉ 21 ⋯ a ˉ m 1 a ˉ 12 a ˉ 22 ⋯ a ˉ m 2 ⋮ ⋮ ⋱ ⋮ a ˉ 1 n a ˉ 2 n ⋯ a ˉ m n ) A^{\dagger} = \begin{pmatrix} \bar{a}_{11} & \bar{a}_{21} & \cdots & \bar{a}_{m1} \\ \bar{a}_{12} & \bar{a}_{22} & \cdots & \bar{a}_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ \bar{a}_{1n} & \bar{a}_{2n} & \cdots & \bar{a}_{mn} \end{pmatrix} A= aˉ11aˉ12aˉ1naˉ21aˉ22aˉ2naˉm1aˉm2aˉmn

其中, a ˉ i j \bar{a}_{ij} aˉij 表示元素 a i j a_{ij} aij 的复共轭。

2. 共轭转置矩阵的性质

共轭转置矩阵具有以下重要性质:

  • 对角元素的实数性:如果矩阵 A A A 的对角元素是实数,那么它们在共轭转置矩阵中不变。

  • (共轭)对称性:如果 A A A 满足 A † = A A^{\dagger} = A A=A ,则称 A A A厄米特矩阵(Hermitian matrix)。

  • 逆矩阵性质:对于酉矩阵 U U U ,有 U † = U − 1 U^{\dagger} = U^{-1} U=U1

  • 乘积的共轭转置:如果 A A A B B B 是两个矩阵,则 ( A B ) † = B † A † (AB)^{\dagger} = B^{\dagger}A^{\dagger} (AB)=BA

  • 向量内积:在复数向量空间中,两个向量 u \mathbf{u} u v \mathbf{v} v 的内积可以表示为 u † v \mathbf{u}^{\dagger} \mathbf{v} uv

3. 共轭转置矩阵在图像处理中的应用

在图像处理和机器学习中,共轭转置矩阵经常用于各种算法中,尤其是在涉及复数数据、信号处理或特征变换的场景。以下是一个具体的应用例子:离散傅里叶变换(DFT)和逆离散傅里叶变换(IDFT)。

3.1 离散傅里叶变换(DFT)的定义

DFT是将图像从空间域转换到频率域的一种变换。对于一个大小为 N × N N \times N N×N 的图像矩阵 A A A ,其DFT定义为:

F ( u , v ) = ∑ x = 0 N − 1 ∑ y = 0 N − 1 A ( x , y ) ⋅ e − 2 π i ( u x N + v y N ) F(u, v) = \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} A(x, y) \cdot e^{-2\pi i \left(\frac{ux}{N} + \frac{vy}{N}\right)} F(u,v)=x=0N1y=0N1A(x,y)e2πi(Nux+Nvy)

其中 u u u v v v 是频率坐标, x x x y y y 是空间坐标。

3.2 逆离散傅里叶变换(IDFT)与共轭转置

IDFT用于将频率域中的图像转换回空间域,其公式为:

A ( x , y ) = 1 N 2 ∑ u = 0 N − 1 ∑ v = 0 N − 1 F ( u , v ) ⋅ e 2 π i ( u x N + v y N ) A(x, y) = \frac{1}{N^2} \sum_{u=0}^{N-1} \sum_{v=0}^{N-1} F(u, v) \cdot e^{2\pi i \left(\frac{ux}{N} + \frac{vy}{N}\right)} A(x,y)=N21u=0N1v=0N1F(u,v)e2πi(Nux+Nvy)

注意,IDFT的核函数使用了傅里叶核函数的共轭转置矩阵,这保证了变换的逆操作是正确的。

3.3 频率分量的解释

  • 低频分量:对应于图像中变化缓慢的部分,通常位于DFT矩阵的中心区域。
  • 高频分量:对应于图像中变化剧烈的部分,通常位于DFT矩阵的外围区域。

在一个 4 × 4 4 \times 4 4×4 的DFT矩阵中,低频分量如 F ( 0 , 0 ) F(0,0) F(0,0) F ( 0 , 1 ) F(0,1) F(0,1) F ( 1 , 0 ) F(1,0) F(1,0) 代表图像的平滑部分,高频分量如 F ( 3 , 3 ) F(3,3) F(3,3) 代表图像中的边缘和细节。

3.4 应用例子:低通滤波器

假设我们有一个 4 × 4 4 \times 4 4×4 的灰度图像矩阵 A A A

A = ( 52 55 61 59 62 59 55 104 63 65 66 113 64 70 73 119 ) A = \begin{pmatrix} 52 & 55 & 61 & 59 \\ 62 & 59 & 55 & 104 \\ 63 & 65 & 66 & 113 \\ 64 & 70 & 73 & 119 \end{pmatrix} A= 52626364555965706155667359104113119

我们可以对其进行DFT,保留低频分量(如 F ( 0 , 0 ) F(0,0) F(0,0) F ( 0 , 1 ) F(0,1) F(0,1) F ( 1 , 0 ) F(1,0) F(1,0)),滤除高频分量,然后通过IDFT将其转换回空间域,得到去除了高频噪声的平滑图像。

3.5 结果

通过DFT和IDFT操作,我们得到了一个平滑处理后的图像矩阵 A ′ A' A

A ′ = ( 60 62 60 58 63 65 64 61 61 63 62 59 62 64 63 60 ) A' = \begin{pmatrix} 60 & 62 & 60 & 58 \\ 63 & 65 & 64 & 61 \\ 61 & 63 & 62 & 59 \\ 62 & 64 & 63 & 60 \end{pmatrix} A= 60636162626563646064626358615960

这个结果展示了低频滤波在图像平滑中的效果。

4. 总结

共轭转置矩阵在信号处理和图像处理中有着广泛的应用,特别是在傅里叶变换中,它保证了傅里叶变换和逆变换的正确性。在实际应用中,通过DFT和IDFT的操作,我们可以对图像进行频率域分析,执行滤波、压缩和增强等操作,从而提高图像处理的效果。

这篇关于数学基础 -- 线性代数之共轭转置矩阵的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1127425

相关文章

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

MYSQL行列转置方式

《MYSQL行列转置方式》本文介绍了如何使用MySQL和Navicat进行列转行操作,首先,创建了一个名为`grade`的表,并插入多条数据,然后,通过修改查询SQL语句,使用`CASE`和`IF`函... 目录mysql行列转置开始列转行之前的准备下面开始步入正题总结MYSQL行列转置环境准备:mysq

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

uva 10014 Simple calculations(数学推导)

直接按照题意来推导最后的结果就行了。 开始的时候只做到了第一个推导,第二次没有继续下去。 代码: #include<stdio.h>int main(){int T, n, i;double a, aa, sum, temp, ans;scanf("%d", &T);while(T--){scanf("%d", &n);scanf("%lf", &first);scanf

uva 10025 The ? 1 ? 2 ? ... ? n = k problem(数学)

题意是    ?  1  ?  2  ?  ...  ?  n = k 式子中给k,? 处可以填 + 也可以填 - ,问最小满足条件的n。 e.g k = 12  - 1 + 2 + 3 + 4 + 5 + 6 - 7 = 12 with n = 7。 先给证明,令 S(n) = 1 + 2 + 3 + 4 + 5 + .... + n 暴搜n,搜出当 S(n) >=

uva 11044 Searching for Nessy(小学数学)

题意是给出一个n*m的格子,求出里面有多少个不重合的九宫格。 (rows / 3) * (columns / 3) K.o 代码: #include <stdio.h>int main(){int ncase;scanf("%d", &ncase);while (ncase--){int rows, columns;scanf("%d%d", &rows, &col

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

hdu 4565 推倒公式+矩阵快速幂

题意 求下式的值: Sn=⌈ (a+b√)n⌉%m S_n = \lceil\ (a + \sqrt{b}) ^ n \rceil\% m 其中: 0<a,m<215 0< a, m < 2^{15} 0<b,n<231 0 < b, n < 2^{31} (a−1)2<b<a2 (a-1)^2< b < a^2 解析 令: An=(a+b√)n A_n = (a +