书生大模型实战营闯关记录----第十一关:LMDeploy 量化部署进阶实践 KV cache量化部署,W4A16 模型量化和部署

本文主要是介绍书生大模型实战营闯关记录----第十一关:LMDeploy 量化部署进阶实践 KV cache量化部署,W4A16 模型量化和部署,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


img

1 配置LMDeploy环境

1.1 环境搭建

点选开发机,自拟一个开发机名称,选择Cuda12.2-conda镜像。

我们要运行参数量为7B的InternLM2.5,由HuggingFace中的InternLM2.5的模型文件查询InternLM2.5-7b-chatconfig.json文件可知,该模型的权重被存储为bfloat16格式
在这里插入图片描述

对于一个7B(70亿)参数的模型,每个参数使用16位浮点数(等于 2个 Byte)表示,则模型的权重大小约为:

70×10^9 parameters×2 Bytes/parameter=14GB

70亿个参数×每个参数占用2个字节=14GB

所以我们需要大于14GB的显存
在终端中,让我们输入以下指令,来创建一个名为lmdeploy的conda环境,python版本为3.10,创建成功后激活环境并安装0.5.3版本的lmdeploy及相关包。

conda create -n lmdeploy  python=3.10 -y
conda activate lmdeploy
conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=12.1 -c pytorch -c nvidia -y
pip install timm==1.0.8 openai==1.40.3 lmdeploy[all]==0.5.3

1.2 InternStudio环境获取模型

为方便文件管理,我们需要一个存放模型的目录,本教程统一放置在/root/models/目录。

运行以下命令,从HuggingFace上下载internlm2_5-7b-chat, internlm2_5-1_8b-chat InternVL2-26B三个模型。

apt-get install git-lfs
git lfs install
# Git LFS initialized.
git clone https://huggingface.co/internlm/internlm2_5-7b-chat
git clone https://huggingface.co/internlm/internlm2_5-1_8b-chat
git clone https://huggingface.co/OpenGVLab/InternVL2-26B

此时,我们可以看到/root/models中会出现internlm2_5-7b-chatinternlm2_5-1_8b-chatInternVL2-26B文件夹。

教程使用internlm2_5-7b-chat和InternVL2-26B作为演示。由于上述模型量化会消耗大量时间(约8h),量化作业请使用internlm2_5-1_8b-chat模型完成。

1.3 LMDeploy验证启动模型文件

在量化工作正式开始前,我们还需要验证一下获取的模型文件能否正常工作,以免竹篮打水一场空。

让我们进入创建好的conda环境并启动InternLM2_5-7b-chat!

conda activate lmdeploy
lmdeploy chat /root/models/internlm2_5-7b-chat

稍待片刻,启动成功后,我们可以在CLI(“命令行界面” Command Line Interface的缩写)中和InternLM2.5尽情对话了,注意输入内容完成后需要按两次回车才能够执行,以下为示例。
在这里插入图片描述
使用nvidia-smi查看显存占用情况。也可以使用gpustat --watch来实时监控显存使用情况。本文是在InternStudio平台进行,所以可以直接通过平台查看到显存使用情况,如下图所示:
在这里插入图片描述
显存占用为36G

那么这是为什么呢?由上文可知InternLM2.5 7B模型为bf16,LMDpeloy推理精度为bf167B模型权重需要占用14GB显存;如下图所示,lmdeploy默认设置cache-max-entry-count0.8,即kv cache占用剩余显存的80%;

而对于40GB的显卡,权重占用14GB,剩余显存40-14=26GB,因此kv cache占用26GB*0.8=20.8GB,加上原来的权重14GB,总共占用34.8GB

实际加载模型后,其他项也会占用部分显存,因此剩余显存比理论偏低,实际占用会略高于34.8GB

img

2 LMDeploy与InternLM2.5

2.1 LMDeploy API部署InternLM2.5

在上一章节,我们直接在本地部署InternLM2.5。而在实际应用中,我们有时会将大模型封装为API接口服务,供客户端访问。

2.1.1 启动API服务器

首先让我们进入创建好的conda环境,并通下命令启动API服务器,部署InternLM2.5模型:

conda activate lmdeploy
lmdeploy serve api_server \/root/models/internlm2_5-7b-chat \--model-format hf \--quant-policy 0 \--server-name 0.0.0.0 \--server-port 23333 \--tp 1

命令解释:

  1. lmdeploy serve api_server:这个命令用于启动API服务器。
  2. /root/models/internlm2_5-7b-chat:这是模型的路径。
  3. --model-format hf:这个参数指定了模型的格式。hf代表“Hugging Face”格式。
  4. --quant-policy 0:这个参数指定了量化策略。
  5. --server-name 0.0.0.0:这个参数指定了服务器的名称。在这里,0.0.0.0是一个特殊的IP地址,它表示所有网络接口。
  6. --server-port 23333:这个参数指定了服务器的端口号。在这里,23333是服务器将监听的端口号。
  7. --tp 1:这个参数表示并行数量(GPU数量)。

稍待片刻,终端显示如下。
在这里插入图片描述

然后打开浏览器,访问http://127.0.0.1:23333看到如下界面即代表部署成功。

在这里插入图片描述

2.1.2 以命令行形式连接API服务器

新建一个终端,执行下面命令开启一个客户端连接刚才运行的接口。

conda activate lmdeploy
lmdeploy serve api_client http://localhost:23333

稍待片刻,等出现double enter to end input >>>的输入提示即启动成功,此时便可以随意与InternLM2.5对话,同样是两下回车确定,输入exit退出。
在这里插入图片描述

2.1.3 以Gradio网页形式连接API服务器

保持第一个终端不动,在新建终端中输入exit退出。

输入以下命令,使用Gradio作为前端,启动网页。

lmdeploy serve gradio http://localhost:23333 \--server-name 0.0.0.0 \--server-port 6006

稍待片刻,等终端如下图所示便保持两个终端不动。

在这里插入图片描述

打开浏览器,访问地址http://127.0.0.1:6006,然后就可以与模型尽情对话了。
在这里插入图片描述

2.2 LMDeploy Lite

随着模型变得越来越大,我们需要一些大模型压缩技术来降低模型部署的成本,并提升模型的推理性能。LMDeploy 提供了权重量化和 k/v cache两种策略。

2.2.1 设置最大kv cache缓存大小

KV cache是一种缓存技术,通过存储键值对的形式来复用计算结果,以达到提高性能和降低内存消耗的目的。在大规模训练和推理中,KV cache可以显著减少重复计算量,从而提升模型的推理速度。理想情况下,kv cache全部存储于显存,以加快访存速度。

模型在运行时,占用的显存可大致分为三部分:模型参数本身占用的显存、KV cache占用的显存,以及中间运算结果占用的显存。LMDeploy的kv cache管理器可以通过设置--cache-max-entry-count参数,控制kv缓存占用剩余显存的最大比例。默认的比例为0.8

首先我们先来回顾一下InternLM2.5正常运行时占用显存。
在这里插入图片描述

占用了23GB,那么试一试执行以下命令,再来观看占用显存情况。

lmdeploy chat /root/models/internlm2_5-7b-chat --cache-max-entry-count 0.4

稍待片刻,观测显存占用情况,可以看到减少了约10GB的显存。
在这里插入图片描述

让我们计算一下4GB显存的减少缘何而来,

对于修改kv cache默认占用之前,即如1.3 LMDeploy验证启动模型文件所示直接启动模型的显存占用情况(36GB):

  1. 在 BF16 精度下,7B模型权重占用14GB70×10^9 parameters×2 Bytes/parameter=14GB
  2. kv cache占用8GB:剩余显存40-14=26GB,kv cache默认占用80%,即26*0.8=20.8GB
  3. 其他项1GB

是故36GB=权重占用14GB+kv cache占用20.8GB+其它项1GB

对于修改kv cache占用之后的显存占用情况(19GB):

  1. 与上述声明一致,在 BF16 精度下,7B模型权重占用14GB
  2. kv cache占用8GB:剩余显存40-14=26GB,kv cache默认占用80%,即26*0.4=10.4GB
  3. 其他项1GB

是故26GB=权重占用14GB+kv cache占用10.4GB+其它项1GB
而此刻减少的10GB显存占用就是从26GB*0.8-26GB*0.4=10GB,这里计算得来。

2.2.2 设置在线 kv cache int4/int8 量化

自 v0.4.0 起,LMDeploy 支持在线 kv cache int4/int8 量化,量化方式为 per-head per-token 的非对称量化。此外,通过 LMDeploy 应用 kv 量化非常简单,只需要设定 quant_policycache-max-entry-count参数。目前,LMDeploy 规定 quant_policy=4 表示 kv int4 量化,quant_policy=8 表示 kv int8 量化。

我们通过2.1 LMDeploy API部署InternLM2.5的实践为例,输入以下指令,启动API服务器。

lmdeploy serve api_server \/root/models/internlm2_5-7b-chat \--model-format hf \--quant-policy 4 \--cache-max-entry-count 0.4\--server-name 0.0.0.0 \--server-port 23333 \--tp 1

稍待片刻,显示如下即代表服务启动成功。
在这里插入图片描述

想要和此时的模型对话的话可以回顾2.1.2 以命令行形式连接API服务器或者2.1.3 以Gradio网页形式连接API服务器的内容自行对话,步骤完全一致,本章主要观测显存状态。

可以看到此时显存占用约26GB,相较于1.3 LMDeploy验证启动模型文件直接启动模型的显存占用情况(36GB)减少了10GB的占用。此时10GB显存的减少逻辑与2.2.1 设置最大kv cache缓存大小中10GB显存的减少一致,均因设置kv cache占用参数cache-max-entry-count至0.4而减少了10GB显存占用。
在这里插入图片描述

那么本节中26GB的显存占用与2.2.1 设置最大kv cache缓存大小中26GB的显存占用区别何在呢?

由于都使用BF16精度下的internlm2.5 7B模型,故剩余显存均为26GB,且 cache-max-entry-count 均为0.4,这意味着LMDeploy将分配40%的剩余显存用于kv cache,即26GB*0.4=10.4GB。但quant-policy 设置为4时,意味着使用int4精度进行量化。因此,LMDeploy将会使用int4精度提前开辟10.4GBkv cache

相比使用BF16精度的kv cache,int4的Cache可以在相同4GB的显存下只需要4位来存储一个数值,而BF16需要16位。这意味着int4的Cache可以存储的元素数量是BF16四倍

2.2.3 W4A16 模型量化和部署

准确说,模型量化是一种优化技术,旨在减少机器学习模型的大小并提高其推理速度。量化通过将模型的权重和激活从高精度(如16位浮点数)转换为低精度(如8位整数、4位整数、甚至二值网络)来实现。

那么标题中的W4A16又是什么意思呢?

  • W4:这通常表示权重量化为4位整数(int4)。这意味着模型中的权重参数将从它们原始的浮点表示(例如FP32、BF16或FP16,Internlm2.5精度为BF16)转换为4位的整数表示。这样做可以显著减少模型的大小。
  • A16:这表示激活(或输入/输出)仍然保持在16位浮点数(例如FP16或BF16)。激活是在神经网络中传播的数据,通常在每层运算之后产生。

因此,W4A16的量化配置意味着:

  • 权重Weight被量化为4位整数
  • 激活Activation保持为16位浮点数
internlm2_5-1_8b-chat 的W4A16量化

让我们回到LMDeploy,在最新的版本中,LMDeploy使用的是AWQ算法,能够实现模型的4bit权重量化。输入以下指令,执行量化工作。这里以采用W4A16量化internlm2_5-1_8b-chat模型为例:

lmdeploy lite auto_awq \/root/models/internlm2_5-1_8b-chat \--calib-dataset 'ptb' \--calib-samples 128 \--calib-seqlen 2048 \--w-bits 4 \--w-group-size 128 \--batch-size 1 \--search-scale False \--work-dir /root/models/internlm2_5-1_8b-chat-w4a16-4bit

命令解释:

  1. lmdeploy lite auto_awq: lite这是LMDeploy的命令,用于启动量化过程,而auto_awq代表自动权重量化(auto-weight-quantization)。
  2. /root/models/internlm2_5-7b-chat: 模型文件的路径。
  3. --calib-dataset 'ptb': 这个参数指定了一个校准数据集,这里使用的是’ptb’(Penn Treebank,一个常用的语言模型数据集)。
  4. --calib-samples 128: 这指定了用于校准的样本数量—128个样本
  5. --calib-seqlen 2048: 这指定了校准过程中使用的序列长度—2048
  6. --w-bits 4: 这表示权重(weights)的位数将被量化为4位。
  7. --work-dir /root/models/internlm2_5-7b-chat-w4a16-4bit: 这是工作目录的路径,用于存储量化后的模型和中间结果。

等终端输出如下时,说明正在推理中,稍待片刻。
在这里插入图片描述

等待推理完成,便可以直接在你设置的目标文件夹看到对应的模型文件。

量化前后模型文件大小对比

那么推理后的模型和原本的模型区别在哪里呢?最明显的两点是模型文件大小以及占据显存大小。

我们可以输入如下指令查看在当前目录中显示所有子目录的大小。

du -sh /root/models/internlm2_5-1_8b-chat-w4a16-4bit

输出结果如下。(其余文件夹都是以软链接的形式存在的,不占用空间,故显示为0)
在这里插入图片描述

那么原模型大小呢?输入以下指令查看。

cd /root/share/new_models/Shanghai_AI_Laboratory/
du -sh internlm2_5-1_8b-chat

终端输出结果如下。
在这里插入图片描述
可以看到,模型文件大小从3.6G减少到了1.5G。

量化前后模型显存占用大小对比

为了使对比比较明显,这里以internlm2_5-7b-chat模型为例,可以按照前面步骤进行量化。
那么显存占用情况对比呢?输入以下指令启动量化后的模型。

lmdeploy chat /root/models/internlm2_5-7b-chat-w4a16-4bit/ --model-format awq

稍待片刻,我们直接观测右上角的显存占用情况。

img

可以发现,相比较于原先的36GB显存占用,W4A16量化后的模型少了约2GB的显存占用。

让我们计算一下2GB显存的减少缘何而来。

对于W4A16量化之前,即如1.3 LMDeploy验证启动模型文件所示直接启动模型的显存占用情况(23GB):

1、在 BF16 精度下,7B模型权重占用14GB:70×10^9 parameters×2 Bytes/parameter=14GB

2、kv cache占用8GB:剩余显存24-14=10GB,kv cache默认占用80%,即10*0.8=8GB

3、其他项1GB

是故23GB=权重占用14GB+kv cache占用8GB+其它项1GB

而对于W4A16量化之后的显存占用情况(20.9GB):

1、在 int4 精度下,7B模型权重占用3.5GB14/4=3.5GB

注释:

  • bfloat16是16位的浮点数格式,占用2字节(16位)的存储空间。int4是4位的整数格式,占用0.5字节(4位)的存储空间。因此,从bfloat16int4的转换理论上可以将模型权重的大小减少到原来的1/4,即7B个int4参数仅占用3.5GB的显存

2、kv cache占用16.4GB:剩余显存24-3.5=20.5GB,kv cache默认占用80%,即20.5*0.8=16.4GB

3、其他项1GB

是故20.9GB=权重占用3.5GB+kv cache占用16.4GB+其它项1GB

2.2.4 W4A16 + KV cache部署internlm2_5-1_8b-chat推理

下面继续使用KV cache量化部署internlm2_5-1_8b-chat模型来进行推理。

输入以下指令,让我们同时启用量化后的模型、设定kv cache占用和kv cache int4量化。

lmdeploy serve api_server \/root/models/internlm2_5-1_8b-chat-w4a16-4bit \--model-format awq \--quant-policy 4 \--cache-max-entry-count 0.4\--server-name 0.0.0.0 \--server-port 23333 \--tp 1

此时显存占用1.8GB
在这里插入图片描述
使用命令启动Gradio客户端后进行对话:
在这里插入图片描述

在这里插入图片描述
可以看到量化之后的效果依旧不错。

3 LMDeploy之FastAPI与Function call

之前在2.1.1 启动API服务器与3.2 LMDeploy API部署InternVL2均是借助FastAPI封装一个API出来让LMDeploy自行进行访问,在这一章节中我们将依托于LMDeploy封装出来的API进行更加灵活更具DIY的开发。

3.1 API开发

与之前一样,让我们进入创建好的conda环境并输入指令启动API服务器。

conda activate lmdeploy
lmdeploy serve api_server \/root/models/internlm2_5-1_8b-chat-w4a16-4bit \--model-format awq \--cache-max-entry-count 0.4 \--quant-policy 4 \--server-name 0.0.0.0 \--server-port 23333 \--tp 1

新建终端中输入如下指令,新建一个internlm2_5.py

touch /root/internlm2_5.py

将以下内容复制粘贴进internlm2_5.py

# 导入openai模块中的OpenAI类,这个类用于与OpenAI API进行交互
from openai import OpenAI# 创建一个OpenAI的客户端实例,需要传入API密钥和API的基础URL
client = OpenAI(api_key='YOUR_API_KEY',  # 替换为你的OpenAI API密钥,由于我们使用的本地API,无需密钥,任意填写即可base_url="http://0.0.0.0:23333/v1"  # 指定API的基础URL,这里使用了本地地址和端口
)# 调用client.models.list()方法获取所有可用的模型,并选择第一个模型的ID
# models.list()返回一个模型列表,每个模型都有一个id属性
model_name = client.models.list().data[0].id# 使用client.chat.completions.create()方法创建一个聊天补全请求
# 这个方法需要传入多个参数来指定请求的细节
response = client.chat.completions.create(model=model_name,  # 指定要使用的模型IDmessages=[  # 定义消息列表,列表中的每个字典代表一个消息{"role": "system", "content": "你是一个友好的小助手,负责解决问题."},  # 系统消息,定义助手的行为{"role": "user", "content": "帮我讲述一个关于狐狸和西瓜的小故事"},  # 用户消息,询问时间管理的建议],temperature=0.8,  # 控制生成文本的随机性,值越高生成的文本越随机top_p=0.8  # 控制生成文本的多样性,值越高生成的文本越多样
)# 打印出API的响应结果
print(response.choices[0].message.content)

现在让我们在新建终端输入以下指令激活环境并运行python代码。

conda activate lmdeploycd /文件所在目录
python internlm2_5.py

终端会输出如下结果。
在这里插入图片描述

此时代表我们成功地使用本地API与大模型进行了一次对话,如果切回第一个终端窗口,会看到如下信息,这代表其成功的完成了一次用户问题GET与输出POST。
在这里插入图片描述

3.2 Function call

关于Function call,即函数调用功能,它允许开发者在调用模型时,详细说明函数的作用,并使模型能够智能地根据用户的提问来输入参数并执行函数。完成调用后,模型会将函数的输出结果作为回答用户问题的依据。

首先让我们进入创建好的conda环境并启动API服务器。

conda activate lmdeploy
lmdeploy serve api_server \/root/models/internlm2_5-7b-chat \--model-format hf \--quant-policy 0 \--server-name 0.0.0.0 \--server-port 23333 \--tp 1

目前LMDeploy在0.5.3版本中支持了对InternLM2, InternLM2.5和llama3.1这三个模型,故我们选用InternLM2.5 封装API。

让我们使用一个简单的例子作为演示。输入如下指令,新建internlm2_5_func.py

touch /root/internlm2_5_func.py

将以下内容复制粘贴进internlm2_5_func.py

from openai import OpenAIdef add(a: int, b: int):return a + bdef mul(a: int, b: int):return a * btools = [{'type': 'function','function': {'name': 'add','description': 'Compute the sum of two numbers','parameters': {'type': 'object','properties': {'a': {'type': 'int','description': 'A number',},'b': {'type': 'int','description': 'A number',},},'required': ['a', 'b'],},}
}, {'type': 'function','function': {'name': 'mul','description': 'Calculate the product of two numbers','parameters': {'type': 'object','properties': {'a': {'type': 'int','description': 'A number',},'b': {'type': 'int','description': 'A number',},},'required': ['a', 'b'],},}
}]
messages = [{'role': 'user', 'content': 'Compute (3+5)*2'}]client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
model_name = client.models.list().data[0].id
response = client.chat.completions.create(model=model_name,messages=messages,temperature=0.8,top_p=0.8,stream=False,tools=tools)
print(response)
func1_name = response.choices[0].message.tool_calls[0].function.name
func1_args = response.choices[0].message.tool_calls[0].function.arguments
func1_out = eval(f'{func1_name}(**{func1_args})')
print(func1_out)messages.append({'role': 'assistant','content': response.choices[0].message.content
})
messages.append({'role': 'environment','content': f'3+5={func1_out}','name': 'plugin'
})
response = client.chat.completions.create(model=model_name,messages=messages,temperature=0.8,top_p=0.8,stream=False,tools=tools)
print(response)
func2_name = response.choices[0].message.tool_calls[0].function.name
func2_args = response.choices[0].message.tool_calls[0].function.arguments
func2_out = eval(f'{func2_name}(**{func2_args})')
print(func2_out)

现在让我们输入以下指令运行python代码。

python internlm2_5_func.py

稍待片刻终端输出如下。
在这里插入图片描述

我们可以看出InternLM2.5将输入'Compute (3+5)*2'根据提供的function拆分成了"加"和"乘"两步,第一步调用function add实现加,再于第二步调用function mul实现乘,再最终输出结果16.

这篇关于书生大模型实战营闯关记录----第十一关:LMDeploy 量化部署进阶实践 KV cache量化部署,W4A16 模型量化和部署的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1126218

相关文章

Golang操作DuckDB实战案例分享

《Golang操作DuckDB实战案例分享》DuckDB是一个嵌入式SQL数据库引擎,它与众所周知的SQLite非常相似,但它是为olap风格的工作负载设计的,DuckDB支持各种数据类型和SQL特性... 目录DuckDB的主要优点环境准备初始化表和数据查询单行或多行错误处理和事务完整代码最后总结Duck

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

k8s部署MongDB全过程

《k8s部署MongDB全过程》文章介绍了如何在Kubernetes集群中部署MongoDB,包括环境准备、创建Secret、创建服务和Deployment,并通过Robo3T工具测试连接... 目录一、环境准备1.1 环境说明1.2 创建 namespace1.3 创建mongdb账号/密码二、创建Sec

Java中的Opencv简介与开发环境部署方法

《Java中的Opencv简介与开发环境部署方法》OpenCV是一个开源的计算机视觉和图像处理库,提供了丰富的图像处理算法和工具,它支持多种图像处理和计算机视觉算法,可以用于物体识别与跟踪、图像分割与... 目录1.Opencv简介Opencv的应用2.Java使用OpenCV进行图像操作opencv安装j

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

将Python应用部署到生产环境的小技巧分享

《将Python应用部署到生产环境的小技巧分享》文章主要讲述了在将Python应用程序部署到生产环境之前,需要进行的准备工作和最佳实践,包括心态调整、代码审查、测试覆盖率提升、配置文件优化、日志记录完... 目录部署前夜:从开发到生产的心理准备与检查清单环境搭建:打造稳固的应用运行平台自动化流水线:让部署像

Python项目打包部署到服务器的实现

《Python项目打包部署到服务器的实现》本文主要介绍了PyCharm和Ubuntu服务器部署Python项目,包括打包、上传、安装和设置自启动服务的步骤,具有一定的参考价值,感兴趣的可以了解一下... 目录一、准备工作二、项目打包三、部署到服务器四、设置服务自启动一、准备工作开发环境:本文以PyChar

Linux中Curl参数详解实践应用

《Linux中Curl参数详解实践应用》在现代网络开发和运维工作中,curl命令是一个不可或缺的工具,它是一个利用URL语法在命令行下工作的文件传输工具,支持多种协议,如HTTP、HTTPS、FTP等... 目录引言一、基础请求参数1. -X 或 --request2. -d 或 --data3. -H 或