基于YOLO的车牌检测识别(YOLO+Transformer)

2024-08-31 17:52

本文主要是介绍基于YOLO的车牌检测识别(YOLO+Transformer),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

概述:
基于深度学习的车牌识别,其中,车辆检测网络直接使用YOLO侦测。而后,才是使用网络侦测车牌与识别车牌号。

车牌的侦测网络,采用的是resnet18,网络输出检测边框的仿射变换矩阵,可检测任意形状的四边形。

车牌号序列模型,采用Resnet18+transformer模型,直接输出车牌号序列。

数据集上,车牌检测使用CCPD 2019数据集,在训练检测模型的时候,会使用程序生成虚假的车牌,覆盖于数据集图片上,来加强检测的能力。

车牌号的序列识别,直接使用程序生成的车牌图片训练,并佐以适当的图像增强手段。模型的训练直接采用端到端的训练方式,输入图片,直接输出车牌号序列,损失采用CTCLoss。

一、网络模型
1、车牌的侦测网络模型:

网络代码定义如下:

class WpodNet(nn.Module):def __init__(self):"""车牌侦测网络,直接使用Resnet18,仅改变输出层。"""super(WpodNet, self).__init__()resnet = resnet18(True)backbone = list(resnet.children())self.backbone = nn.Sequential(nn.BatchNorm2d(3),*backbone[:3],*backbone[4:8],)self.detection = nn.Conv2d(512, 8, 3, 1, 1)def forward(self, x):features = self.backbone(x)out = self.detection(features)out = rearrange(out, 'n c h w -> n h w c') # 变换形状return out

该网络,相当于直接对图片划分cell,即在16X16的格子中,侦测车牌,输出的为该车牌边框的反射变换矩阵。

2、车牌号的序列识别网络:
车牌号序列识别的主干网络:采用的是ResNet18+transformer,其中有ResNet18完成对图片的编码工作,再由transformer解码为对应的字符。

网络代码定义如下:

from torch import nn
from torchvision.models import resnet18
import torch
from einops import rearrangeclass OcrNet(nn.Module):def __init__(self,num_class):super(OcrNet, self).__init__()resnet = resnet18(True)backbone = list(resnet.children())self.backbone = nn.Sequential(nn.BatchNorm2d(3),*backbone[:3],*backbone[4:8],)  # 创建ResNet18self.decoder = nn.Sequential(Block(512, 8, False),Block(512, 8, False),)  # 由Transformer 构成的解码器self.out_layer = nn.Linear(512, num_class)  # 线性输出层self.abs_pos_emb = AbsPosEmb((3, 9), 512)  # 绝对位置编码def forward(self,x):x = self.backbone(x)x = rearrange(x,'n c h w -> n (w h) c')x = x + self.abs_pos_emb()x = self.decoder(x)x = rearrange(x, 'n s v -> s n v')return self.out_layer(x)

其中的Block类的代码如下:

class Block(nn.Module):r"""Args:embed_dim: 词向量的特征数。num_head: 多头注意力的头数。is_mask: 是否添加掩码。是,则网络只能看到每个词前的内容,而无法看到后面的内容。Shape:- Input: N,S,V (批次,序列数,词向量特征数)- Output:same shape as the inputExamples::# >>> m = Block(720, 12)# >>> x = torch.randn(4, 13, 720)# >>> output = m(x)# >>> print(output.shape)# torch.Size([4, 13, 720])"""def __init__(self, embed_dim, num_head, is_mask):super(Block, self).__init__()self.ln_1 = nn.LayerNorm(embed_dim)self.attention = SelfAttention(embed_dim, num_head, is_mask)self.ln_2 = nn.LayerNorm(embed_dim)self.feed_forward = nn.Sequential(nn.Linear(embed_dim, embed_dim * 6),nn.ReLU(),nn.Linear(embed_dim * 6, embed_dim))def forward(self, x):'''计算多头自注意力'''attention = self.attention(self.ln_1(x))'''残差'''x = attention + xx = self.ln_2(x)'''计算feed forward部分'''h = self.feed_forward(x)x = h + x  # 增加残差return x

位置编码的代码如下:

class AbsPosEmb(nn.Module):def __init__(self,fmap_size,dim_head):super().__init__()height, width = fmap_sizescale = dim_head ** -0.5self.height = nn.Parameter(torch.randn(height, dim_head) * scale)self.width = nn.Parameter(torch.randn(width, dim_head) * scale)def forward(self):emb = rearrange(self.height, 'h d -> h () d') + rearrange(self.width, 'w d -> () w d')emb = rearrange(emb, ' h w d -> (w h) d')return emb

Block类使用的自注意力代码如下:

class SelfAttention(nn.Module):r"""多头自注意力Args:embed_dim: 词向量的特征数。num_head: 多头注意力的头数。is_mask: 是否添加掩码。是,则网络只能看到每个词前的内容,而无法看到后面的内容。Shape:- Input: N,S,V (批次,序列数,词向量特征数)- Output:same shape as the inputExamples::# >>> m = SelfAttention(720, 12)# >>> x = torch.randn(4, 13, 720)# >>> output = m(x)# >>> print(output.shape)# torch.Size([4, 13, 720])"""def __init__(self, embed_dim, num_head, is_mask=True):super(SelfAttention, self).__init__()assert embed_dim % num_head == 0self.num_head = num_headself.is_mask = is_maskself.linear1 = nn.Linear(embed_dim, 3 * embed_dim)self.linear2 = nn.Linear(embed_dim, embed_dim)def forward(self, x):'''x 形状 N,S,V'''x = self.linear1(x)  # 形状变换为N,S,3Vn, s, v = x.shape"""分出头来,形状变换为 N,S,H,V"""x = x.reshape(n, s, self.num_head, -1)"""换轴,形状变换至 N,H,S,V"""x = torch.transpose(x, 1, 2)'''分出Q,K,V'''query, key, value = torch.chunk(x, 3, -1)dk = value.shape[-1] ** 0.5'''计算自注意力'''w = torch.matmul(query, key.transpose(-1, -2)) / dk  # w 形状 N,H,S,Sif self.is_mask:"""生成掩码"""mask = torch.tril(torch.ones(w.shape[-1], w.shape[-1])).to(w.device)w = w * mask - 1e10 * (1 - mask)w = torch.softmax(w, dim=-1)  # softmax归一化attention = torch.matmul(w, value)  # 各个向量根据得分合并合并, 形状 N,H,S,V'''换轴至 N,S,H,V'''attention = attention.permute(0, 2, 1, 3)n, s, h, v = attention.shape'''合并H,V,相当于吧每个头的结果cat在一起。形状至N,S,V'''attention = attention.reshape(n, s, h * v)return self.linear2(attention)  # 经过线性层后输出

二、数据加载
1、车牌号的数据加载
通过程序生成一组车牌号:
在这里插入图片描述

再通过数据增强,主要包括:
随机污损:
在这里插入图片描述
高斯模糊:
在这里插入图片描述
仿射变换,粘贴于一张大图中:
在这里插入图片描述
四边形的四个角的位置随机偏移些许后扣出:
在这里插入图片描述

然后直接训练车牌号的序列识别网络,

loss_func = nn.CTCLoss(blank=0, zero_infinity=True)
optimizer = torch.optim.Adam(self.net.parameters(), lr=0.00001)

优化器直接使用Adam,损失函数为CTCLoss。

2、车牌检测的数据加载
数据使用的是CCPD数据集,在这过程中,会随机的使用生成车牌,覆盖原始图片的车牌位置,来训练网络对车牌的检测能力。

if random.random() < 0.5:plate, _ = self.draw()plate = cv2.cvtColor(plate, cv2.COLOR_RGB2BGR)plate = self.smudge(plate)  # 随机污损image = enhance.apply_plate(image, points, plate)  # 粘贴车牌图片于数据图中
[x1, y1, x2, y2, x4, y4, x3, y3] = points
points = [x1, x2, x3, x4, y1, y2, y3, y4]
image, pts = enhance.augment_detect(image, points, 208)

三、训练
分别训练即可
其中,侦测网络的损失计算,如下:

def count_loss(self, predict, target):condition_positive = target[:, :, :, 0] == 1  # 筛选标签condition_negative = target[:, :, :, 0] == 0predict_positive = predict[condition_positive]predict_negative = predict[condition_negative]target_positive = target[condition_positive]target_negative = target[condition_negative]n, v = predict_positive.shapeif n > 0:loss_c_positive = self.c_loss(predict_positive[:, 0:2], target_positive[:, 0].long())else:loss_c_positive = 0loss_c_nagative = self.c_loss(predict_negative[:, 0:2], target_negative[:, 0].long())loss_c = loss_c_nagative + loss_c_positiveif n > 0:affine = torch.cat((predict_positive[:, 2:3],predict_positive[:,3:4],predict_positive[:,4:5],predict_positive[:,5:6],predict_positive[:,6:7],predict_positive[:,7:8]),dim=1)# print(affine.shape)# exit()trans_m = affine.reshape(-1, 2, 3)unit = torch.tensor([[-0.5, -0.5, 1], [0.5, -0.5, 1], [0.5, 0.5, 1], [-0.5, 0.5, 1]]).transpose(0, 1).to(trans_m.device).float()# print(unit)point_pred = torch.einsum('n j k, k d -> n j d', trans_m, unit)point_pred = rearrange(point_pred, 'n j k -> n (j k)')loss_p = self.l1_loss(point_pred, target_positive[:, 1:])else:loss_p = 0# exit()return loss_c, loss_p

侦测网络输出的反射变换矩阵,但对车牌位置的标签给的是四个角点的位置,所以需要响应转换后,做损失。其中,该cell是否有目标,使用CrossEntropyLoss,而对车牌位置损失,采用的则是L1Loss。

四、推理

根目录下运行,

python kenshutsu.py

记得修改py文件中的模型权重路径位置。

在这里插入图片描述

推理解析:
1、侦测网络的推理
按照一般侦测网络,推理即可。只是,多了一步将反射变换矩阵转换为边框位置的计算。
另外,在YOLO侦测到得测量图片传入该级进行车牌检测的时候,会做一步操作。代码见下,将车辆检测框的图片扣出,然后resize到长宽均为16的整数倍。

h, w, c = image.shape
f = min(288 * max(h, w) / min(h, w), 608) / min(h, w)
_w = int(w * f) + (0 if w % 16 == 0 else 16 - w % 16)
_h = int(h * f) + (0 if h % 16 == 0 else 16 - h % 16)
image = cv2.resize(image, (_w, _h), interpolation=cv2.INTER_AREA)

在这里插入图片描述

2、序列检测网络的推理
对网络输出的序列,进行去重操作即可,如间隔标识符为“*”时:

def deduplication(self, c):'''符号去重'''temp = ''new = ''for i in c:if i == temp:continueelse:if i == '*':temp = icontinuenew += itemp = ireturn new

五、完整代码

https://github.com/HibikiJie/LicensePlate

这篇关于基于YOLO的车牌检测识别(YOLO+Transformer)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1124586

相关文章

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

基于 YOLOv5 的积水检测系统:打造高效智能的智慧城市应用

在城市发展中,积水问题日益严重,特别是在大雨过后,积水往往会影响交通甚至威胁人们的安全。通过现代计算机视觉技术,我们能够智能化地检测和识别积水区域,减少潜在危险。本文将介绍如何使用 YOLOv5 和 PyQt5 搭建一个积水检测系统,结合深度学习和直观的图形界面,为用户提供高效的解决方案。 源码地址: PyQt5+YoloV5 实现积水检测系统 预览: 项目背景

JavaFX应用更新检测功能(在线自动更新方案)

JavaFX开发的桌面应用属于C端,一般来说需要版本检测和自动更新功能,这里记录一下一种版本检测和自动更新的方法。 1. 整体方案 JavaFX.应用版本检测、自动更新主要涉及一下步骤: 读取本地应用版本拉取远程版本并比较两个版本如果需要升级,那么拉取更新历史弹出升级控制窗口用户选择升级时,拉取升级包解压,重启应用用户选择忽略时,本地版本标志为忽略版本用户选择取消时,隐藏升级控制窗口 2.

[数据集][目标检测]血细胞检测数据集VOC+YOLO格式2757张4类别

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):2757 标注数量(xml文件个数):2757 标注数量(txt文件个数):2757 标注类别数:4 标注类别名称:["Platelets","RBC","WBC","sickle cell"] 每个类别标注的框数:

Temu官方宣导务必将所有的点位材料进行检测-RSL资质检测

关于饰品类产品合规问题宣导: 产品法规RSL要求 RSL测试是根据REACH法规及附录17的要求进行测试。REACH法规是欧洲一项重要的法规,其中包含许多对化学物质进行限制的规定和高度关注物质。 为了确保珠宝首饰的安全性,欧盟REACH法规规定,珠宝首饰上架各大电商平台前必须进行RSLReport(欧盟禁限用化学物质检测报告)资质认证,以确保产品不含对人体有害的化学物质。 RSL-铅,

Clion不识别C代码或者无法跳转C语言项目怎么办?

如果是中文会显示: 此时只需要右击项目,或者你的源代码目录,将这个项目或者源码目录标记为项目源和头文件即可。 英文如下:

YOLOv8/v10+DeepSORT多目标车辆跟踪(车辆检测/跟踪/车辆计数/测速/禁停区域/绘制进出线/绘制禁停区域/车道车辆统计)

01:YOLOv8 + DeepSort 车辆跟踪 该项目利用YOLOv8作为目标检测模型,DeepSort用于多目标跟踪。YOLOv8负责从视频帧中检测出车辆的位置,而DeepSort则负责关联这些检测结果,从而实现车辆的持续跟踪。这种组合使得系统能够在视频流中准确地识别并跟随特定车辆。 02:YOLOv8 + DeepSort 车辆跟踪 + 任意绘制进出线 在此基础上增加了用户

独立按键单击检测(延时消抖+定时器扫描)

目录 独立按键简介 按键抖动 模块接线 延时消抖 Key.h Key.c 定时器扫描按键代码 Key.h Key.c main.c 思考  MultiButton按键驱动 独立按键简介 ​ 轻触按键相当于一种电子开关,按下时开关接通,松开时开关断开,实现原理是通过轻触按键内部的金属弹片受力弹动来实现接通与断开。  ​ 按键抖动 由于按键内部使用的是机