Python优化算法20——精英反向学习与二次插值改进的黏菌算法(ISMA)

本文主要是介绍Python优化算法20——精英反向学习与二次插值改进的黏菌算法(ISMA),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

科研里面优化算法都用的多,尤其是各种动物园里面的智能仿生优化算法,但是目前都是MATLAB的代码多,python几乎没有什么包,这次把优化算法系列的代码都从底层手写开始。

需要看以前的优化算法文章可以参考:Python优化算法_阡之尘埃的博客-CSDN博客


算法背景

之前写过黏菌优化算法的文章,现在有很多新的黏菌优化算法,都是进行了一些改进。本次带来的是混沌精英黏菌算法,当然也会和普通的黏菌优化进行对比。

这是文章的摘要:

针对基本黏菌算法(SMA)易陷入局部最优值、收敛精度较低和收敛速度较慢的

问题,提出精英反向学习与二次插值改进的黏菌算法(ISMA)。精英反向学习策

略有利于提高黏菌种群多样性和种群质量,提升算法全局寻优性能与收敛精度;利用二次插值生成新的黏菌个

体,并用适应度评估更新全局最优解,有利于增强算法局部开发能力,减少算法收敛时间,使算法跳出局部极值。

通过求解多个单模态、多模态和高维度测试函数进行不同算法之间的对比,结果显示,结合两种策略的ISMA 具

有较高的寻优精度、寻优速度和鲁棒性。

文章和理论看看就行,主要是代码。本文都是python实现。文章和代码文件都在文末有获取方式。


代码实现

导入包

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt 
import seaborn as sns
import warnings
import copyplt.rcParams ['font.sans-serif'] ='SimHei'               #显示中文
plt.rcParams ['axes.unicode_minus']=False               #显示负号
warnings.filterwarnings('ignore')
plt.rcParams['font.family'] = 'DejaVu Sans'

只给代码不给使用案例就都是钓鱼的。我这里给出代码,也要给使用案例,先采用一些简单的优化算法常用的测试函数。由于都优化算法需要测试函数,我们先都定义好常见的23个函数:

'''F1函数'''
def F1(X):Results=np.sum(X**2)return Results'''F2函数'''
def F2(X):Results=np.sum(np.abs(X))+np.prod(np.abs(X))return Results'''F3函数'''
def F3(X):dim=X.shape[0]Results=0for i in range(dim):Results=Results+np.sum(X[0:i+1])**2return Results'''F4函数'''
def F4(X):Results=np.max(np.abs(X))return Results'''F5函数'''
def F5(X):dim=X.shape[0]Results=np.sum(100*(X[1:dim]-(X[0:dim-1]**2))**2+(X[0:dim-1]-1)**2)return Results'''F6函数'''
def F6(X):Results=np.sum(np.abs(X+0.5)**2)return Results'''F7函数'''
def F7(X):dim = X.shape[0]Temp = np.arange(1,dim+1,1)Results=np.sum(Temp*(X**4))+np.random.random()return Results'''F8函数'''
def F8(X):Results=np.sum(-X*np.sin(np.sqrt(np.abs(X))))return Results'''F9函数'''
def F9(X):dim=X.shape[0]Results=np.sum(X**2-10*np.cos(2*np.pi*X))+10*dimreturn Results'''F10函数'''
def F10(X):dim=X.shape[0]Results=-20*np.exp(-0.2*np.sqrt(np.sum(X**2)/dim))-np.exp(np.sum(np.cos(2*np.pi*X))/dim)+20+np.exp(1)return Results'''F11函数'''
def F11(X):dim=X.shape[0]Temp=np.arange(1,dim+1,+1)Results=np.sum(X**2)/4000-np.prod(np.cos(X/np.sqrt(Temp)))+1return Results'''F12函数'''
def Ufun(x,a,k,m):Results=k*((x-a)**m)*(x>a)+k*((-x-a)**m)*(x<-a)return Resultsdef F12(X):dim=X.shape[0]Results=(np.pi/dim)*(10*((np.sin(np.pi*(1+(X[0]+1)/4)))**2)+\np.sum((((X[0:dim-1]+1)/4)**2)*(1+10*((np.sin(np.pi*(1+X[1:dim]+1)/4)))**2)+((X[dim-1]+1)/4)**2))+\np.sum(Ufun(X,10,100,4))return Results'''F13函数'''
def Ufun(x,a,k,m):Results=k*((x-a)**m)*(x>a)+k*((-x-a)**m)*(x<-a)return Resultsdef F13(X):dim=X.shape[0]Results=0.1*((np.sin(3*np.pi*X[0]))**2+np.sum((X[0:dim-1]-1)**2*(1+(np.sin(3*np.pi*X[1:dim]))**2))+\((X[dim-1]-1)**2)*(1+(np.sin(2*np.pi*X[dim-1]))**2))+np.sum(Ufun(X,5,100,4))return Results'''F14函数'''
def F14(X):aS=np.array([[-32,-16,0,16,32,-32,-16,0,16,32,-32,-16,0,16,32,-32,-16,0,16,32,-32,-16,0,16,32],\[-32,-32,-32,-32,-32,-16,-16,-16,-16,-16,0,0,0,0,0,16,16,16,16,16,32,32,32,32,32]])bS=np.zeros(25)for i in range(25):bS[i]=np.sum((X-aS[:,i])**6)Temp=np.arange(1,26,1)Results=(1/500+np.sum(1/(Temp+bS)))**(-1)return Results'''F15函数'''
def F15(X):aK=np.array([0.1957,0.1947,0.1735,0.16,0.0844,0.0627,0.0456,0.0342,0.0323,0.0235,0.0246])bK=np.array([0.25,0.5,1,2,4,6,8,10,12,14,16])bK=1/bKResults=np.sum((aK-((X[0]*(bK**2+X[1]*bK))/(bK**2+X[2]*bK+X[3])))**2)return Results'''F16函数'''
def F16(X):Results=4*(X[0]**2)-2.1*(X[0]**4)+(X[0]**6)/3+X[0]*X[1]-4*(X[1]**2)+4*(X[1]**4)return Results'''F17函数'''
def F17(X):Results=(X[1]-(X[0]**2)*5.1/(4*(np.pi**2))+(5/np.pi)*X[0]-6)**2+10*(1-1/(8*np.pi))*np.cos(X[0])+10return Results'''F18函数'''
def F18(X):Results=(1+(X[0]+X[1]+1)**2*(19-14*X[0]+3*(X[0]**2)-14*X[1]+6*X[0]*X[1]+3*X[1]**2))*\(30+(2*X[0]-3*X[1])**2*(18-32*X[0]+12*(X[0]**2)+48*X[1]-36*X[0]*X[1]+27*(X[1]**2)))return Results'''F19函数'''
def F19(X):aH=np.array([[3,10,30],[0.1,10,35],[3,10,30],[0.1,10,35]])cH=np.array([1,1.2,3,3.2])pH=np.array([[0.3689,0.117,0.2673],[0.4699,0.4387,0.747],[0.1091,0.8732,0.5547],[0.03815,0.5743,0.8828]])Results=0for i in range(4):Results=Results-cH[i]*np.exp(-(np.sum(aH[i,:]*((X-pH[i,:]))**2)))return Results'''F20函数'''
def F20(X):aH=np.array([[10,3,17,3.5,1.7,8],[0.05,10,17,0.1,8,14],[3,3.5,1.7,10,17,8],[17,8,0.05,10,0.1,14]])cH=np.array([1,1.2,3,3.2])pH=np.array([[0.1312,0.1696,0.5569,0.0124,0.8283,0.5886],[0.2329,0.4135,0.8307,0.3736,0.1004,0.9991],\[0.2348,0.1415,0.3522,0.2883,0.3047,0.6650],[0.4047,0.8828,0.8732,0.5743,0.1091,0.0381]])Results=0for i in range(4):Results=Results-cH[i]*np.exp(-(np.sum(aH[i,:]*((X-pH[i,:]))**2)))return Results'''F21函数'''
def F21(X):aSH=np.array([[4,4,4,4],[1,1,1,1],[8,8,8,8],[6,6,6,6],[3,7,3,7],\[2,9,2,9],[5,5,3,3],[8,1,8,1],[6,2,6,2],[7,3.6,7,3.6]])cSH=np.array([0.1,0.2,0.2,0.4,0.4,0.6,0.3,0.7,0.5,0.5])Results=0for i in range(5):Results=Results-(np.dot((X-aSH[i,:]),(X-aSH[i,:]).T)+cSH[i])**(-1)return Results'''F22函数'''
def F22(X):aSH=np.array([[4,4,4,4],[1,1,1,1],[8,8,8,8],[6,6,6,6],[3,7,3,7],\[2,9,2,9],[5,5,3,3],[8,1,8,1],[6,2,6,2],[7,3.6,7,3.6]])cSH=np.array([0.1,0.2,0.2,0.4,0.4,0.6,0.3,0.7,0.5,0.5])Results=0for i in range(7):Results=Results-(np.dot((X-aSH[i,:]),(X-aSH[i,:]).T)+cSH[i])**(-1)return Results'''F23函数'''
def F23(X):aSH=np.array([[4,4,4,4],[1,1,1,1],[8,8,8,8],[6,6,6,6],[3,7,3,7],\[2,9,2,9],[5,5,3,3],[8,1,8,1],[6,2,6,2],[7,3.6,7,3.6]])cSH=np.array([0.1,0.2,0.2,0.4,0.4,0.6,0.3,0.7,0.5,0.5])Results=0for i in range(10):Results=Results-(np.dot((X-aSH[i,:]),(X-aSH[i,:]).T)+cSH[i])**(-1)return Results

把他们的参数设置都用字典装起来

#维度,搜索区间下界,搜索区间上界,最优值
Funobject = {'F1': F1,'F2': F2,'F3': F3,'F4': F4,'F5': F5,'F6': F6,'F7': F7,'F8': F8,'F9': F9,'F10': F10,'F11': F11,'F12': F12,'F13': F13,'F14': F14,'F15': F15,'F16': F16,'F17': F17,'F18': F18,'F19': F19,'F20': F20,'F21': F21,'F22': F22,'F23': F23}
Funobject.keys()Fundim={'F1': [30,-100,100],'F2': [30,-10,10],'F3': [30,-100,100],'F4': [30,-10,10],'F5': [30,-30,30],'F6': [30,-100,100],'F7': [30,-1.28,1.28],'F8': [30,-500,500],'F9':[30,-5.12,5.12],'F10': [30,-32,32],'F11': [30,-600,600],'F12': [30,-50,50],'F13': [30,-50,50],'F14': [2,-65,65],'F15':[4,-5,5],'F16': [2,-5,5],'F17':[2,-5,5],'F18': [2,-2,2],'F19': [3,0,1],'F20': [6,0,1],'F21':[4,0,10],'F22': [4,0,10],'F23': [4,0,10]}

Fundim字典里面装的是对应这个函数的 ,维度,搜索区间下界,搜索区间上界。这样写好方便我们去遍历测试所有的函数。


精英反向与二次插值改进的黏菌算法

终于到了算法的主代码阶段了,这里还会给出普通的黏菌优化算法的代码。

import numpy as np
import random
import math
import copy''' 精英反向策略种群初始化函数 '''def initial(pop, dim, ub, lb,fun):X = np.zeros([pop, dim])Xback = np.zeros([pop, dim])index = np.zeros(pop)for i in range(pop):for j in range(dim):X[i, j] = random.random()*(ub[j] - lb[j]) + lb[j]Xback[i,j]=ub[j]+lb[j]-X[i,j]if fun(Xback[i,:])<fun(X[i,:]):X[i,:]=copy.copy(Xback[i,:])else:index[i]=1 # 原始解更优,则该解为精英解ubJ = np.max(X,axis=0)lbJ = np.min(X,axis=0)for i in range(pop):if index[i]==0: #更新精英反向解X[i,:]=np.random.random()*(ubJ[j]+lbJ[j])-X[i,j]return X, lb, ub'''边界检查函数'''def BorderCheck(X, ub, lb, pop, dim):for i in range(pop):for j in range(dim):if X[i, j] > ub[j]:X[i, j] = ub[j]elif X[i, j] < lb[j]:X[i, j] = lb[j]return X'''计算适应度函数'''def CaculateFitness(X, fun):pop = X.shape[0]fitness = np.zeros([pop, 1])for i in range(pop):fitness[i] = fun(X[i, :])return fitness'''适应度排序'''def SortFitness(Fit):fitness = np.sort(Fit, axis=0)index = np.argsort(Fit, axis=0)return fitness, index'''根据适应度对位置进行排序'''def SortPosition(X, index):Xnew = np.zeros(X.shape)for i in range(X.shape[0]):Xnew[i, :] = X[index[i], :]return Xnew'''改进黏菌优化算法'''def ISMA(pop, dim, lb, ub, MaxIter, fun):z = 0.03  # 位置更新参数X, lb, ub = initial(pop, dim, ub, lb,fun)  # 初始化种群fitness = CaculateFitness(X, fun)  # 计算适应度值fitness, sortIndex = SortFitness(fitness)  # 对适应度值排序X = SortPosition(X, sortIndex)  # 种群排序GbestScore = copy.copy(fitness[0])GbestPositon = copy.copy(X[0, :])Curve = np.zeros([MaxIter, 1])W = np.zeros([pop, dim])  # 权重W矩阵for t in range(MaxIter):worstFitness = fitness[-1]bestFitness = fitness[0]S = bestFitness-worstFitness + 10E-8  # 当前最优适应度于最差适应度的差值,10E-8为极小值,避免分母为0;for i in range(pop):if i < pop/2:  # 适应度排前一半的W计算W[i, :] = 1+np.random.random([1, dim]) * \np.log10((bestFitness-fitness[i])/(S)+1)else:  # 适应度排后一半的W计算W[i, :] = 1-np.random.random([1, dim]) * \np.log10((bestFitness-fitness[i])/(S)+1)# 惯性因子a,btt = -(t/MaxIter)+1if tt != -1 and tt != 1:a = math.atanh(tt)else:a = 1b = 1-t/MaxIter# 位置更新for i in range(pop):if np.random.random() < z:X[i, :] = (ub.T-lb.T)*np.random.random([1, dim])+lb.Telse:p = np.tanh(abs(fitness[i]-GbestScore))vb = 2*a*np.random.random([1, dim])-avc = 2*b*np.random.random([1, dim])-bfor j in range(dim):r = np.random.random()A = np.random.randint(pop)B = np.random.randint(pop)if r < p:X[i, j] = GbestPositon[j] + \vb[0, j]*(W[i, j]*X[A, j]-X[B, j])else:X[i, j] = vc[0, j]*X[i, j]X = BorderCheck(X, ub, lb, pop, dim)  # 边界检测fitness = CaculateFitness(X, fun)  # 计算适应度值fitness, sortIndex = SortFitness(fitness)  # 对适应度值排序X = SortPosition(X, sortIndex)  # 种群排序if(fitness[0] <= GbestScore):  # 更新全局最优GbestScore = copy.copy(fitness[0])GbestPositon = copy.copy(X[0, :])# 改进点:进行二次插值# 随机选择两个个体indexR1 = np.random.randint(pop)indexR2 = np.random.randint(pop)XX=copy.deepcopy(X[indexR1,:])Y = copy.deepcopy(X[indexR2,:])Z = copy.deepcopy(GbestPositon)Fx = fitness[indexR1]Fy=fitness[indexR2]Fz=GbestScoreTemp = np.zeros([1,dim])Temp[0,:]=((Z**2-Y**2)*Fx+(XX**2-Z**2)*Fy+(Y**2-XX**2)*Fz)/(2*((Z-Y)*Fx+(XX-Z)*Fy+(Y-XX)*Fz))for j in range(dim):if Temp[0,j]>ub[j]:Temp[0,j]=ub[j]if Temp[0,j]<lb[j]:Temp[0,j]=lb[j]fTemp = fun(Temp[0,:])if fTemp<GbestScore:GbestScore=fTempfitness[0]=fTempX[0,:]=copy.copy(Temp[0,:])GbestPositon = copy.copy(Temp[0,:])Curve[t] = GbestScorereturn GbestScore, GbestPositon, Curve

普通黏菌优化(SMA):

''' 种群初始化函数 '''
def initial_SMA(pop, dim, ub, lb):X = np.zeros([pop, dim])for i in range(pop):for j in range(dim):X[i, j] = random.random()*(ub[j] - lb[j]) + lb[j]return X,lb,ub'''边界检查函数'''
def BorderCheck_SMA(X,ub,lb,pop,dim):for i in range(pop):for j in range(dim):if X[i,j]>ub[j]:X[i,j] = ub[j]elif X[i,j]<lb[j]:X[i,j] = lb[j]return X'''计算适应度函数'''
def CaculateFitness_SMA(X,fun):pop = X.shape[0]fitness = np.zeros([pop, 1])for i in range(pop):fitness[i] = fun(X[i, :])return fitness'''适应度排序'''
def SortFitness_SMA(Fit):fitness = np.sort(Fit, axis=0)index = np.argsort(Fit, axis=0)return fitness,index'''根据适应度对位置进行排序'''
def SortPosition_SMA(X,index):Xnew = np.zeros(X.shape)for i in range(X.shape[0]):Xnew[i,:] = X[index[i],:]return Xnew'''黏菌优化算法'''
def SMA(pop,dim,lb,ub,MaxIter,fun):z = 0.03 #位置更新参数X,lb,ub = initial_SMA(pop, dim, ub, lb) #初始化种群fitness = CaculateFitness_SMA(X,fun) #计算适应度值fitness,sortIndex = SortFitness_SMA(fitness) #对适应度值排序X = SortPosition_SMA(X,sortIndex) #种群排序GbestScore = copy.copy(fitness[0])GbestPositon = copy.copy(X[0,:])Curve = np.zeros([MaxIter,1])W = np.zeros([pop,dim]) #权重W矩阵for t in range(MaxIter):worstFitness = fitness[-1]bestFitness = fitness[0]S=bestFitness-worstFitness+ 10E-8 #当前最优适应度于最差适应度的差值,10E-8为极小值,避免分母为0;for i in range(pop):if i<pop/2: #适应度排前一半的W计算W[i,:]= 1+np.random.random([1,dim])*np.log10((bestFitness-fitness[i])/(S)+1)else:#适应度排后一半的W计算W[i,:]= 1-np.random.random([1,dim])*np.log10((bestFitness-fitness[i])/(S)+1)#惯性因子a,btt = -(t/MaxIter)+1if tt!=-1 and tt!=1:a = math.atanh(tt)else:a = 1b = 1-t/MaxIter#位置更新for i in range(pop):if np.random.random()<z:X[i,:] = (ub.T-lb.T)*np.random.random([1,dim])+lb.Telse:p = np.tanh(abs(fitness[i]-GbestScore))vb = 2*a*np.random.random([1,dim])-avc = 2*b*np.random.random([1,dim])-bfor j in range(dim):r = np.random.random()A = np.random.randint(pop)B = np.random.randint(pop)if r<p:X[i,j] = GbestPositon[j] + vb[0,j]*(W[i,j]*X[A,j]-X[B,j])else:X[i,j] = vc[0,j]*X[i,j]X = BorderCheck_SMA(X,ub,lb,pop,dim) #边界检测       fitness = CaculateFitness_SMA(X,fun) #计算适应度值fitness,sortIndex = SortFitness_SMA(fitness) #对适应度值排序X = SortPosition_SMA(X,sortIndex) #种群排序if(fitness[0]<=GbestScore): #更新全局最优GbestScore = copy.copy(fitness[0])GbestPositon = copy.copy(X[0,:])Curve[t] = GbestScorereturn GbestScore,GbestPositon,Curve

其实优化算法差不多都是这个流程,边界函数,适应度函数排序,然后寻优过程等等。

两个算法都放入字典,后面批量化测试。

OPT_algorithms = {'SMA':SMA,'ISMA':ISMA}
OPT_algorithms.keys()

简单使用

我们选择F12来测试,先看看F12函数三维的情况:

'''F12绘图函数'''
import numpy as np
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3Ddef F12Plot():fig = plt.figure(1) #定义figureax = Axes3D(fig) #将figure变为3dx1=np.arange(-50,50,1) #定义x1,范围为[-50,50],间隔为1x2=np.arange(-50,50,1) #定义x2,范围为[-50,50],间隔为1X1,X2=np.meshgrid(x1,x2) #生成网格nSize = x1.shape[0]Z=np.zeros([nSize,nSize])for i in range(nSize):for j in range(nSize):X=[X1[i,j],X2[i,j]] #构造F12输入X=np.array(X) #将格式由list转换为arrayZ[i,j]=F12(X)  #计算F12的值#绘制3D曲面# rstride:行之间的跨度  cstride:列之间的跨度# rstride:行之间的跨度  cstride:列之间的跨度# cmap参数可以控制三维曲面的颜色组合ax.plot_surface(X1, X2, Z, rstride = 1, cstride = 1, cmap = plt.get_cmap('rainbow'))ax.contour(X1, X2, Z, zdir='z', offset=0)#绘制等高线ax.set_xlabel('X1')#x轴说明ax.set_ylabel('X2')#y轴说明ax.set_zlabel('Z')#z轴说明ax.set_title('F12_space')plt.show()F12Plot()

然后我们使用优化算法来寻优,自定义好所有的参数:

#设置参数
pop = 30 #种群数量
MaxIter = 200#最大迭代次数
dim = 30 #维度
lb = -100*np.ones([dim, 1]) #下边界
ub = 100*np.ones([dim, 1])#上边界
#选择适应度函数
fobj = F12
#原始算法
GbestScore,GbestPositon,Curve = ISMA(pop,dim,lb,ub,MaxIter,fobj) 
#改进算法print('------原始算法结果--------------')
print('最优适应度值:',GbestScore)
print('最优解:',GbestPositon)

其实f12测试函数的最小值是0。所以可以看到这个算法几乎达到了最优,效果看起来还行。

自己使用解决实际问题的时候只需要替换fobj这个目标函数的参数就可以了。

这个函数就如同上面所有的自定义的测试函数一样,你只需要定义输入的x,经过1系列实际问题的计算逻辑,返回的适应度值就可以。


绘制适应度曲线

#绘制适应度曲线
plt.figure(figsize=(6,2.7),dpi=128)
plt.semilogy(Curve,'b-',linewidth=2)
plt.xlabel('Iteration',fontsize='medium')
plt.ylabel("Fitness",fontsize='medium')
plt.grid()
plt.title('ISMA',fontsize='large')
plt.legend(['ISMA'], loc='upper right')
plt.show()

我这里是对数轴,但是也收敛了,200轮左右最小值。

其实看到这里差不多就可以去把这个优化算法的函数拿去使用了,演示结束了,但是由于我们这里还需要对它的性能做一些测试,我们会把它在所有的测试函数上都跑一遍,这个时间可能是有点久的。


所有函数都测试一下

准备存储评价结果的数据框

functions = list(Funobject.keys())
algorithms = list(OPT_algorithms.keys())
columns = ['Mean', 'Std', 'Best', 'Worth']
index = pd.MultiIndex.from_product([functions, algorithms], names=['function_name', 'Algorithm_name'])
df_eval = pd.DataFrame(index=index, columns=columns)
df_eval.head()

索引和列名称都建好了,现在就是一个个跑,把值放进去就行了。

准备存储迭代图的数据框

df_Curve=pd.DataFrame(columns=index)
df_Curve

自定义训练函数

#定义训练函数
def train_fun(fobj_name=None,opt_algo_name=None, pop=30,MaxIter=200,Iter=30,show_fit=False):fundim=Fundim[fobj_name]  ; fobj=Funobject[fobj_name]dim=fundim[0]lb = fundim[1]*np.ones([dim, 1]) ; ub = fundim[2]*np.ones([dim, 1])opt_algo=OPT_algorithms[opt_algo_name]GbestScore_one=np.zeros([Iter])GbestPositon_one=np.zeros([Iter,dim])Curve_one=np.zeros([Iter,MaxIter])for i in range(Iter):GbestScore_one[i],GbestPositon_one[i,:],Curve_oneT =opt_algo(pop,dim,lb,ub,MaxIter,fobj)Curve_one[i,:]=Curve_oneT.Toneal_Mean=np.mean(GbestScore_one) #计算平均适应度值oneal_Std=np.std(GbestScore_one)#计算标准差oneal_Best=np.min(GbestScore_one)#计算最优值oneal_Worst=np.max(GbestScore_one)#计算最差值oneal_MeanCurve=Curve_one.mean(axis=0) #求平均适应度曲线#储存结果df_eval.loc[(fobj_name, opt_algo_name), :] = [oneal_Mean,oneal_Std, oneal_Best,oneal_Worst]df_Curve.loc[:,(fobj_name,opt_algo_name)]=oneal_MeanCurve#df_Curve[df_Curve.columns[(fobj_name,opt_algo_name)]] = oneal_MeanCurveif show_fit:print(f'{fobj_name}函数的{opt_algo_name}算法的平均适应度值是{oneal_Mean},标准差{oneal_Std},最优值{oneal_Best},最差值{oneal_Worst}')

 

训练测试

#设置参数
pop = 30#种群数量
MaxIter = 100 #代次数
Iter = 30 #运行次数

计算,遍历所有的测试函数

#所有函数,所有算法全部一次性计算
for fobj_name in list(Funobject.keys()):for opt_algo_name in OPT_algorithms.keys():try:train_fun(fobj_name=fobj_name,opt_algo_name=opt_algo_name, pop=pop,MaxIter=MaxIter,Iter=Iter)print(f'{fobj_name}的{opt_algo_name}算法完成')except Exception as e: # 使用 except 来捕获错误print(f'{fobj_name}的{opt_algo_name}算法报错了:{e}') # 打印错误信息

查看计算出来的评价指标

df_eval

由于这里大部分的测试函数最优值都是零,我们可以看到。两个算法在寻优的最优值情况都是差不多的,其中isma会比sma的最优值都稍微小一点。所以说两者的效果是差不多的,isma会稍微好一点点。

同样在f5这个最优值为零的函数上,两者都没有寻到最优,也就是说他可能还是没有跳出局部最优的这种情况。sma有的缺陷,isma可能还是存在,但是整体而言的话,从最优值的情况下来看,它的效果确实还稍微好一点点,例如f6和f8的最优值都稍微更小了一些。


画出迭代图

评价一个优化算法肯定不能只从最优的情况来看,还要看他训练轮数寻优收敛的时间轮数,来综合评价。

colors = ['darkorange', 'limegreen', 'lightpink', 'deeppink', 'red', 'cornflowerblue', 'grey']
markers = ['^', 'D', 'o', '*', 'X', 'p', 's']def plot_log_line(df_plot, fobj_name, step=10, save=False):plt.figure(figsize=(6, 3), dpi=128)for column, color, marker in zip(df_plot.columns, colors, markers):plt.semilogy(df_plot.index[::step], df_plot[column][::step].to_numpy(), color=color, marker=marker, label=column, markersize=4, alpha=0.7)plt.xlabel('Iterations')plt.ylabel('f')plt.legend(loc='best', fontsize=8)if save:plt.savefig(f'./图片/{fobj_name}不同迭代图.png', bbox_inches='tight')plt.show()# 使用示例
# plot_log_line(your_dataframe, 'example_plot')
for fobj_name in df_Curve.columns.get_level_values(0).unique():df1=df_Curve[fobj_name]print(f'{fobj_name}的不同算法效果对比:')plot_log_line(df1,fobj_name,5,False)   #保存图片-True

注意这里是y轴是对数轴,看起来没那么陡峭。这里可以打印它在每一个测试函数上的迭代图,可以自己具体仔细观察。

这里是把两个算法的迭代曲线图都进行了对比,所有函数都有,这里就不展示太多了,我们从j截图的两个图来看。可以发现isma的收敛速度稍微会快一些,我观察了所有的函数,这个收敛速动也是看情况的,但大多数时候来说isma收敛的一般都是更快的,也就是说这个改进是有效的。


后面还有更多的优化算法,等我有空都写完。其实文章最核心的还是优化算法的函数那一块儿,别的代码都是用来测试它的性能的

当然需要本次案例的全部代码文件的还是可以参考:精英反向学习与二次插值改进的黏菌算法,这个算法的文章论文PDF也在。

创作不易,看官觉得写得还不错的话点个关注和赞吧,本人会持续更新python数据分析领域的代码文章~(需要定制类似的代码可私信)

这篇关于Python优化算法20——精英反向学习与二次插值改进的黏菌算法(ISMA)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1124369

相关文章

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

利用Python编写一个简单的聊天机器人

《利用Python编写一个简单的聊天机器人》这篇文章主要为大家详细介绍了如何利用Python编写一个简单的聊天机器人,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 使用 python 编写一个简单的聊天机器人可以从最基础的逻辑开始,然后逐步加入更复杂的功能。这里我们将先实现一个简单的

基于Python开发电脑定时关机工具

《基于Python开发电脑定时关机工具》这篇文章主要为大家详细介绍了如何基于Python开发一个电脑定时关机工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 简介2. 运行效果3. 相关源码1. 简介这个程序就像一个“忠实的管家”,帮你按时关掉电脑,而且全程不需要你多做

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

Python xmltodict实现简化XML数据处理

《Pythonxmltodict实现简化XML数据处理》Python社区为提供了xmltodict库,它专为简化XML与Python数据结构的转换而设计,本文主要来为大家介绍一下如何使用xmltod... 目录一、引言二、XMLtodict介绍设计理念适用场景三、功能参数与属性1、parse函数2、unpa

Python中使用defaultdict和Counter的方法

《Python中使用defaultdict和Counter的方法》本文深入探讨了Python中的两个强大工具——defaultdict和Counter,并详细介绍了它们的工作原理、应用场景以及在实际编... 目录引言defaultdict的深入应用什么是defaultdictdefaultdict的工作原理

Python中@classmethod和@staticmethod的区别

《Python中@classmethod和@staticmethod的区别》本文主要介绍了Python中@classmethod和@staticmethod的区别,文中通过示例代码介绍的非常详细,对大... 目录1.@classmethod2.@staticmethod3.例子1.@classmethod