《NLP自然语言处理》—— 关键字提取之TF-IDF算法

2024-08-31 09:44

本文主要是介绍《NLP自然语言处理》—— 关键字提取之TF-IDF算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、TF-IDF算法介绍
  • 二、举例说明
  • 三、示例:代码实现
  • 四、总结

一、TF-IDF算法介绍

  • TF-IDF(Term Frequency-Inverse Document Frequency)是一种用于信息检索与文本挖掘的常用加权技术。TF-IDF是一种统计方法,用以评估一个词语对于一个文件集或一个语料库中的其中一份文件的重要程度。词语的重要性随着它在文件中出现的次数成正比增加,但同时会随着它在语料库中出现的频率成反比下降。
  • TF-IDF的主要思想是:如果某个词或短语在一篇文章中出现的频率TF高,并且在其他文章中很少出现,则认为这个词或者短语具有很好的类别区分能力,适合用来分类。
  • TF(Term Frequency,词频)
    • 词频(TF)指的是某一个给定的词语在该文件中出现的次数。这个数字通常会被归一化(一般是词频除以文章总词数),以防止它偏向长的文件。(同一个词语在长文件里可能会比短文件有更高的词频,而不管该词语重要与否。)
    • 计算公式如下:
      在这里插入图片描述
  • IDF(Inverse Document Frequency,逆文档频率)
    • 逆文档频率(IDF)是一个词语普遍重要性的度量。某一特定词语的IDF,可以由总文件数目除以包含该词语之文件的数目,再将得到的商取对数得到。如果包含词条t的文档越少,IDF越大,则说明词条t具有很好的类别区分能力。
    • 计算公式如下:
      在这里插入图片描述
    • +1是为了避免包含该词的文档数为0的时候,分子为0的情况发生
  • TF-IDF的计算公式
    在这里插入图片描述

二、举例说明

  • 假设有一篇名为《中国的蜜蜂养殖》文章,假定该文长度为1000个词,“中国”、“蜜蜂”、养殖"各出现20次,则这三个词的"词频”(TF)都为0.02。

  • 然后,搜索Google发现,包含"的"字的网页共有250亿张,假定这就是中文网页总数(语料库的文档总数)。包含"中国"的网页共有62.3亿张,包含"蜜蜂"的网页为0.484亿张,包含"养殖"的网页为0.973亿张

  • 则通过计算公式可以得到它们的逆文档频率(IDF)和TF-IDF如下:

    \包含该词的文档数(亿)IDFTFTF-IDF
    中国62.30.6030.020.0121
    蜜蜂0.4842.7130.020.0543
    养殖0.9732.4100.020.0482

三、示例:代码实现

  • TfidfVectorizer() 是 sklearn 库中用于将文本集合转换为 TF-IDF 特征矩阵的一个类。

  • TfidfVectorizer 类有许多参数,但以下是一些最常用的:

    • input: 指定输入数据的格式,可以是 ‘filename’、‘file’ 或 ‘string’。默认为 ‘content’,这意味着输入应该是字符串列表或字符串的生成器。
    • max_df: 指定词或短语的文档频率(DF)的上限。高于此值的词或短语将被忽略。这有助于去除一些太常见的词(如停用词)。
    • min_df: 指定词或短语的文档频率(DF)的下限。低于此值的词或短语将被忽略。这有助于去除一些非常罕见的词。
    • max_features: 指定要保留的词的最大数量(基于文档频率)。这有助于减少特征空间的维度。
    • ngram_range: 一个元组 (min_n, max_n),用于指定不同 n 值对应的 n-grams 的范围。例如,(1, 1) 表示单词(unigrams),(1, 2) 表示单词和二元组(bigrams)。
    • stop_words: 一个字符串列表,包含要忽略的停用词。可以是一个预定义的列表,如 - ‘english’,也可以是一个自定义的列表。
    • lowercase: 布尔值,指定是否将所有文本转换为小写。默认为 True。
    • use_idf: 布尔值,指定是否使用 IDF(逆文档频率)重新加权。默认为 True。
    • smooth_idf: 布尔值,指定在计算 IDF 时是否应用平滑(添加 1 到文档频率,以避免除以零)。默认为 True。
  • 主要方法

    • fit(X, y=None): 计算词汇表的词汇IDF值。
    • fit_transform(X, y=None): 拟合模型并转换 X。
    • transform(X): 将 X 转换为 TF-IDF 特征矩阵。
    • get_feature_names_out(): 返回词汇表中所有特征的名称
  • 示例

    from sklearn.feature_extraction.text import TfidfVectorizer  # 示例文本
    """
    corpus代表整个语料库,其中的每一句,代表一个文档
    """  
    corpus = [  'This is the first document.',  'This document is the second document.',  'And this is the third one.',  'Is this the first document?',  
    ]  # 创建 TF-IDF 向量化器  
    vectorizer = TfidfVectorizer()  # 拟合和转换数据  
    X = vectorizer.fit_transform(corpus)  # 获取特征名称(词汇)  
    feature_names = vectorizer.get_feature_names_out()  # 将 TF-IDF 矩阵转换为 DataFrame,可以清楚的看出每个词汇的TF-IDF值
    import pandas as pd  
    df = pd.DataFrame(X.toarray(), columns=feature_names)  
    print(df)
    
    • 由于输出面板中看不全结果,我们可以在调试模式中打开我们想要查看的内容
    • 我们可以查看这个语料库中一共有多少个特征词汇,注意这里每个词汇的前后顺序是根据26个英文字母的顺序进行排序的
      在这里插入图片描述
      在这里插入图片描述
    • 通过上图中的结果,我们可以直观的看到每篇文档中每个特征词汇的TF-IDF值,并且可以选出每篇文档中TF-IDF值最高的,作为关键词汇

四、总结

  • TF-IDF的优缺点
    • 优点:

      • 简单有效,易于实现。
      • 可以在不同长度的文档上进行比较。
      • 考虑了词语的普遍重要性(IDF)。
    • 缺点:

      • 没有考虑词语的语义信息,例如同义词和多义词。
      • 对于小数据集可能效果不佳,因为IDF的计算依赖于大量的文档。
      • 没有考虑词语的位置信息,如标题、段落等。
  • 总的来说,TF-IDF是一种简单而强大的文本特征提取方法,在许多自然语言处理任务中都有广泛的应用。然而,对于需要更深入理解文本语义的任务,可能需要结合其他更复杂的自然语言处理技术。

这篇关于《NLP自然语言处理》—— 关键字提取之TF-IDF算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1123547

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

dp算法练习题【8】

不同二叉搜索树 96. 不同的二叉搜索树 给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。 示例 1: 输入:n = 3输出:5 示例 2: 输入:n = 1输出:1 class Solution {public int numTrees(int n) {int[] dp = new int