书生大模型实战营基础(5)——XTuner 微调个人小助手认知任务

2024-08-31 08:44

本文主要是介绍书生大模型实战营基础(5)——XTuner 微调个人小助手认知任务,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1 、微调前置基础

2、准备工作

2.1环境配置

结果

2.2模型准备

目录结构:在目录结构中可以看出,internlm2-chat-1_8b 是一个符号链接

3、快速开始

3.1 微调前的模型对话

获取开发机端口和密码:

3.2 指令跟随微调

3.2.1 准备数据文件

目录结构

3.2.2 准备配置文件

3.2.2.1 列出支持的配置文件

3.2.2.2 复制一个预设的配置文件

目录结构图片

3.2.2.3 对配置文件进行修改

配置文件图片 

3.2.3 启动微调

在训练完后,我们的目录结构 图片:

3.2.4 模型格式转换

 模型格式转换完成,目录结构图:

3.2.5 模型合并

模型合并完成后,我们的目录结构:

3.3 微调后的模型对话

图片


1 、微调前置基础

本节主要重点是带领大家实现个人小助手微调,如果想了解微调相关的基本概念,可以访问XTuner微调前置基础。

2、准备工作

2.1环境配置

按照前面步骤创建开发机,名称:XTuner微调,选择开发机镜像:Cuda12.2-conda,可选择10%有更高可选择更高。

克隆仓库:
 

mkdir -p /root/InternLM/Tutorial
git clone -b camp3  https://github.com/InternLM/Tutorial /root/InternLM/Tutorial
# 创建虚拟环境
conda create -n xtuner0121 python=3.10 -y# 激活虚拟环境(注意:后续的所有操作都需要在这个虚拟环境中进行)
conda activate xtuner0121# 安装一些必要的库
conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=12.1 -c pytorch -c nvidia -y
# 安装其他依赖
pip install transformers==4.39.3
pip install streamlit==1.36.0

安装XTuner

虚拟环境创建完成后,就可以安装 XTuner 了。首先,从 Github 上下载源码。

# 创建一个目录,用来存放源代码
mkdir -p /root/InternLM/codecd /root/InternLM/codegit clone -b v0.1.21  https://github.com/InternLM/XTuner /root/InternLM/code/XTuner

其次,进入源码目录,执行安装。

# 进入到源码目录
cd /root/InternLM/code/XTuner
conda activate xtuner0121# 执行安装
pip install -e '.[deepspeed]'

如果速度太慢可以换成 pip install -e '.[deepspeed]' -i https://mirrors.aliyun.com/pypi/simple/

最后,我们可以验证一下安装结果。

xtuner version

通过以下命令来查看相关的帮助:xtuner help

接下来准备好我们需要的模型、数据集和配置文件,并进行微调训练。

结果

2.2模型准备

可以通过以下代码一键通过符号链接的方式链接到模型文件,这样既节省了空间,也便于管理。

# 创建一个目录,用来存放微调的所有资料,后续的所有操作都在该路径中进行
mkdir -p /root/InternLM/XTunercd /root/InternLM/XTunermkdir -p Shanghai_AI_Laboratoryln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b Shanghai_AI_Laboratory/internlm2-chat-1_8b

执行上述操作后,Shanghai_AI_Laboratory/internlm2-chat-1_8b 将直接成为一个符号链接,这个链接指向 /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b 的位置。

这意味着,当我们访问 Shanghai_AI_Laboratory/internlm2-chat-1_8b 时,实际上就是在访问 /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b 目录下的内容。通过这种方式,我们无需复制任何数据,就可以直接利用现有的模型文件进行后续的微调操作,从而节省存储空间并简化文件管理。

模型文件准备好后,我们可以使用tree命令来观察目录结构

apt-get install -y treetree -l

目录结构:在目录结构中可以看出,internlm2-chat-1_8b 是一个符号链接

3、快速开始

简述:用 internlm2-chat-1_8b 模型,通过 QLoRA 的方式来微调一个自己的小助手认知作为案例来进行演示。

3.1 微调前的模型对话

通过网页端的 Demo 来看看微调前 internlm2-chat-1_8b 的对话效果。

首先,我们需要准备一个Streamlit程序的脚本。

Streamlit程序的完整代码是:tools/xtuner_streamlit_demo.py。

启动应用:

conda activate xtuner0121streamlit run /root/InternLM/Tutorial/tools/xtuner_streamlit_demo.py

运行后需要端口映射

获取开发机端口和密码:

其中,8501是Streamlit程序的服务端口,43551需要替换为自己的开发机的端口。

ssh -CNg -L 8501:127.0.0.1:8501 root@ssh.intern-ai.org.cn -p 43551

在本地通过浏览器访问:http://127.0.0.1:8501 来进行对话

3.2 指令跟随微调

接下来,对模型进行微调,让模型了解自己是一个助手

3.2.1 准备数据文件

为了将模型变成我们想要的样子,回复符合我们的预期,需要向微调数据集中加入这样的数据。

准备数据文件datas/assisttant.json,文件内容为对话数据。

cd /root/InternLM/XTuner
mkdir -p datas
touch datas/assistant.json

为了简化数据文件准备,我们也可以通过脚本生成的方式来准备数据。创建一个脚本文件 xtuner_generate_assistant.py :

cd /root/InternLM/XTuner
touch xtuner_generate_assistant.py

输入脚本内容并保存:

xtuner_generate_assistant.py:

import json# 设置用户的名字
name = '伍鲜同志'
# 设置需要重复添加的数据次数
n = 8000# 初始化数据
data = [{"conversation": [{"input": "请介绍一下你自己", "output": "我是{}的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦".format(name)}]},{"conversation": [{"input": "你在实战营做什么", "output": "我在这里帮助{}完成XTuner微调个人小助手的任务".format(name)}]}
]# 通过循环,将初始化的对话数据重复添加到data列表中
for i in range(n):data.append(data[0])data.append(data[1])# 将data列表中的数据写入到'datas/assistant.json'文件中
with open('datas/assistant.json', 'w', encoding='utf-8') as f:# 使用json.dump方法将数据以JSON格式写入文件# ensure_ascii=False 确保中文字符正常显示# indent=4 使得文件内容格式化,便于阅读json.dump(data, f, ensure_ascii=False, indent=4)
cd /root/InternLM/XTuner
cp /root/InternLM/Tutorial/tools/xtuner_generate_assistant.py ./

为了训练出自己的小助手,需要将脚本中name后面的内容修改为你自己的名称。

# 将对应的name进行修改(在第4行的位置)
- name = '伍鲜同志'
+ name = "你自己的名称"

假如想要让微调后的模型能够完完全全认识到你的身份,我们还可以把第6行的n的值调大一点。不过n值太大的话容易导致过拟合,无法有效回答其他问题。

然后执行该脚本来生成数据文件

cd /root/InternLM/XTuner
conda activate xtuner0121python xtuner_generate_assistant.py

准备好数据文件后,我们的目录结构应该是这样子的。

目录结构

3.2.2 准备配置

文件

在准备好了模型和数据集后,我们就要根据我们选择的微调方法结合微调方案来找到与我们最匹配的配置文件了,从而减少我们对配置文件的修改量。

配置文件其实是一种用于定义和控制模型训练和测试过程中各个方面的参数和设置的工具。

3.2.2.1 列出支持的配置文件

XTuner 提供多个开箱即用的配置文件,可以通过以下命令查看。

xtuner list-cfg 命令用于列出内置的所有配置文件。参数 -p 或 --pattern 表示模式匹配,后面跟着的内容将会在所有的配置文件里进行模糊匹配搜索,然后返回最有可能得内容。比如我们这里微调的是书生·浦语的模型,我们就可以匹配搜索 internlm2

conda activate xtuner0121xtuner list-cfg -p internlm2
3.2.2.2 复制一个预设的配置文件

由于我们是对internlm2-chat-1_8b模型进行指令微调,所以与我们的需求最匹配的配置文件是 internlm2_chat_1_8b_qlora_alpaca_e3,这里就复制该配置文件。

xtuner copy-cfg 命令用于复制一个内置的配置文件。该命令需要两个参数:CONFIG 代表需要复制的配置文件名称,SAVE_PATH 代表复制的目标路径。在我们的输入的这个命令中,我们的 CONFIG 对应的是上面搜索到的 internlm2_chat_1_8b_qlora_alpaca_e3 ,而 SAVE_PATH 则是当前目录 .

cd /root/InternLM/XTuner
conda activate xtuner0121xtuner copy-cfg internlm2_chat_1_8b_qlora_alpaca_e3 .
3.2.2.3 对配置文件进行修改

在选择了一个最匹配的配置文件并准备好其他内容后,下面我们要做的事情就是根据我们自己的内容对该配置文件进行调整,使其能够满足我们实际训练的要求。

下面我们将根据项目的需求一步步的进行修改和调整

在 PART 1 的部分,由于我们不再需要在 HuggingFace 上自动下载模型,因此我们先要更换模型的路径以及数据集的路径为我们本地的路径。

为了训练过程中能够实时观察到模型的变化情况,XTuner 贴心的推出了一个 evaluation_inputs 的参数来让我们能够设置多个问题来确保模型在训练过程中的变化是朝着我们想要的方向前进的。我们可以添加自己的输入。

在 PART 3 的部分,由于我们准备的数据集是 JSON 格式的数据,并且对话内容已经是 input 和 output 的数据对,所以不需要进行格式转换。

#######################################################################
#                          PART 1  Settings                           #
#######################################################################
- pretrained_model_name_or_path = 'internlm/internlm2-chat-1_8b'
+ pretrained_model_name_or_path = '/root/InternLM/XTuner/Shanghai_AI_Laboratory/internlm2-chat-1_8b'

- alpaca_en_path = 'tatsu-lab/alpaca'
+ alpaca_en_path = 'datas/assistant.json'

evaluation_inputs = [
-    '请给我介绍五个上海的景点', 'Please tell me five scenic spots in Shanghai'
+    '请介绍一下你自己', 'Please introduce yourself'
]

#######################################################################
#                      PART 3  Dataset & Dataloader                   #
#######################################################################
alpaca_en = dict(
    type=process_hf_dataset,
-   dataset=dict(type=load_dataset, path=alpaca_en_path),
+   dataset=dict(type=load_dataset, path='json', data_files=dict(train=alpaca_en_path)),
    tokenizer=tokenizer,
    max_length=max_length,
-   dataset_map_fn=alpaca_map_fn,
+   dataset_map_fn=None,
    template_map_fn=dict(
        type=template_map_fn_factory, template=prompt_template),
    remove_unused_columns=True,
    shuffle_before_pack=True,
    pack_to_max_length=pack_to_max_length,
    use_varlen_attn=use_varlen_attn)

除此之外,我们还可以对一些重要的参数进行调整,包括学习率(lr)、训练的轮数(max_epochs)等等。

修改完后的完整的配置文件是:configs/internlm2_chat_1_8b_qlora_alpaca_e3_copy.py。

可以直接复制到当前目录。

cd /root/InternLM/XTuner
cp /root/InternLM/Tutorial/configs/internlm2_chat_1_8b_qlora_alpaca_e3_copy.py ./

3.2.3 启动微调

完成了所有的准备工作后,我们就可以正式的开始我们下一阶段的旅程:XTuner 启动~!

接下来,只需要将使用 xtuner train 命令令即可开始训练。

xtuner train 命令用于启动模型微调进程。该命令需要一个参数:CONFIG 用于指定微调配置文件。这里我们使用修改好的配置文件 internlm2_chat_1_8b_qlora_alpaca_e3_copy.py
训练过程中产生的所有文件,包括日志、配置文件、检查点文件、微调后的模型等,默认保存在 work_dirs 目录下,我们也可以通过添加 --work-dir 指定特定的文件保存位置。

cd /root/InternLM/XTuner
conda activate xtuner0121xtuner train ./internlm2_chat_1_8b_qlora_alpaca_e3_copy.py

训练结束:

3.2.4 模型格式转换

模型转换的本质其实就是将原本使用 Pytorch 训练出来的模型权重文件转换为目前通用的 HuggingFace 格式文件,那么我们可以通过以下命令来实现一键转换。使用 xtuner convert pth_to_hf 命令来进行模型格式转换。

cd /root/InternLM/XTuner
conda activate xtuner0121# 先获取最后保存的一个pth文件
pth_file=`ls -t ./work_dirs/internlm2_chat_1_8b_qlora_alpaca_e3_copy/*.pth | head -n 1`
export MKL_SERVICE_FORCE_INTEL=1
export MKL_THREADING_LAYER=GNU
xtuner convert pth_to_hf ./internlm2_chat_1_8b_qlora_alpaca_e3_copy.py ${pth_file} ./hf

 模型格式转换完成,目录结构图:

转换完成后,可以看到模型被转换为 HuggingFace 中常用的 .bin 格式文件,这就代表着文件成功被转化为 HuggingFace 格式了。

此时,hf 文件夹即为我们平时所理解的所谓 “LoRA 模型文件”

可以简单理解:LoRA 模型文件 = Adapter

3.2.5 模型合并

对于 LoRA 或者 QLoRA 微调出来的模型其实并不是一个完整的模型,而是一个额外的层(Adapter),训练完的这个层最终还是要与原模型进行合并才能被正常的使用。

对于全量微调的模型(full)其实是不需要进行整合这一步的,因为全量微调修改的是原模型的权重而非微调一个新的 Adapter ,因此是不需要进行模型整合的。

在 XTuner 中提供了一键合并的命令 xtuner convert merge,在使用前我们需要准备好三个路径,包括原模型的路径、训练好的 Adapter 层的(模型格式转换后的)路径以及最终保存的路径。

xtuner convert merge命令用于合并模型。该命令需要三个参数:LLM 表示原模型路径,ADAPTER 表示 Adapter 层的路径, SAVE_PATH 表示合并后的模型最终的保存路径。

在模型合并这一步还有其他很多的可选参数,包括:

cd /root/InternLM/XTuner
conda activate xtuner0121export MKL_SERVICE_FORCE_INTEL=1
export MKL_THREADING_LAYER=GNU
xtuner convert merge /root/InternLM/XTuner/Shanghai_AI_Laboratory/internlm2-chat-1_8b ./hf ./merged --max-shard-size 2GB

模型合并完成后,我们的目录结构:

3.3 微调后的模型对话

微调完成后,我们可以再次运行xtuner_streamlit_demo.py脚本来观察微调后的对话效果,不过在运行之前,我们需要将脚本中的模型路径修改为微调后的模型的路径。

# 直接修改脚本文件第18行
- model_name_or_path = "/root/InternLM/XTuner/Shanghai_AI_Laboratory/internlm2-chat-1_8b"
+ model_name_or_path = "/root/InternLM/XTuner/merged"

然后,我们可以直接启动应用。

conda activate xtuner0121streamlit run /root/InternLM/Tutorial/tools/xtuner_streamlit_demo.py

运行后,确保端口映射正常,如果映射已断开则需要重新做一次端口映射。

ssh -CNg -L 8501:127.0.0.1:8501 root@ssh.intern-ai.org.cn -p 43551

最后,通过浏览器访问:http://127.0.0.1:8501 来进行对话了。

这篇关于书生大模型实战营基础(5)——XTuner 微调个人小助手认知任务的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1123419

相关文章

Python Invoke自动化任务库的使用

《PythonInvoke自动化任务库的使用》Invoke是一个强大的Python库,用于编写自动化脚本,本文就来介绍一下PythonInvoke自动化任务库的使用,具有一定的参考价值,感兴趣的可以... 目录什么是 Invoke?如何安装 Invoke?Invoke 基础1. 运行测试2. 构建文档3.

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

解决Cron定时任务中Pytest脚本无法发送邮件的问题

《解决Cron定时任务中Pytest脚本无法发送邮件的问题》文章探讨解决在Cron定时任务中运行Pytest脚本时邮件发送失败的问题,先优化环境变量,再检查Pytest邮件配置,接着配置文件确保SMT... 目录引言1. 环境变量优化:确保Cron任务可以正确执行解决方案:1.1. 创建一个脚本1.2. 修

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

Java实现任务管理器性能网络监控数据的方法详解

《Java实现任务管理器性能网络监控数据的方法详解》在现代操作系统中,任务管理器是一个非常重要的工具,用于监控和管理计算机的运行状态,包括CPU使用率、内存占用等,对于开发者和系统管理员来说,了解这些... 目录引言一、背景知识二、准备工作1. Maven依赖2. Gradle依赖三、代码实现四、代码详解五

如何使用celery进行异步处理和定时任务(django)

《如何使用celery进行异步处理和定时任务(django)》文章介绍了Celery的基本概念、安装方法、如何使用Celery进行异步任务处理以及如何设置定时任务,通过Celery,可以在Web应用中... 目录一、celery的作用二、安装celery三、使用celery 异步执行任务四、使用celery

Golang使用minio替代文件系统的实战教程

《Golang使用minio替代文件系统的实战教程》本文讨论项目开发中直接文件系统的限制或不足,接着介绍Minio对象存储的优势,同时给出Golang的实际示例代码,包括初始化客户端、读取minio对... 目录文件系统 vs Minio文件系统不足:对象存储:miniogolang连接Minio配置Min

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

什么是cron? Linux系统下Cron定时任务使用指南

《什么是cron?Linux系统下Cron定时任务使用指南》在日常的Linux系统管理和维护中,定时执行任务是非常常见的需求,你可能需要每天执行备份任务、清理系统日志或运行特定的脚本,而不想每天... 在管理 linux 服务器的过程中,总有一些任务需要我们定期或重复执行。就比如备份任务,通常会选在服务器资

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt