【智能算法改进】路径规划问题的多策略改进樽海鞘群算法研究

2024-08-31 02:44

本文主要是介绍【智能算法改进】路径规划问题的多策略改进樽海鞘群算法研究,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

    • 1.算法原理
    • 2.改进点
    • 3.结果展示
    • 4.参考文献
    • 5.代码获取


1.算法原理

【智能算法】樽海鞘群算法(SSA)原理及实现

2.改进点

无标度网络策略

复杂网络在图论中可以用边和节点表示, Barabasi 等于1999年通过分析大量的数据提出了无标度网络模型. 该网络的度分布满足幂律分布, 这种网络结构已经在现实的世界中得到证明,如互联网、大脑神经系统网络和生物网络。产生无标度网络的经典模型便是 BA 模型,步骤分为:

在这里插入图片描述

首先构建出一个无标度网络结构来映射跟随者的关系, 接下来通过 BA 模型生成与跟随者数量相同的网络。跟随者可在网络中随机选择邻居ρ 进行位置更新:
x j i = 1 2 ( x j i + x j ρ ) , ρ ∈ N e i g h b o r ( i ) (1) x_{j}^{i}=\frac{1}{2}( x_{j}^{i}+x_{j}^{\rho} ) ,\rho\in\mathrm{Neighbor}(i)\tag{1} xji=21(xji+xjρ),ρNeighbor(i)(1)

自适应权重策略

为了对整个樽海鞘群进行动态调整, 考虑集成自适应权重策略。权重w:
ω = ( 1 − t T m a x ) e − c c = ∑ i = 1 N ∑ j = 1 dim ⁡ ( x j i − x ‾ j ) 2 × 1 N × D (2) \begin{aligned} &\left.\omega=\left(\begin{array}{c}1-\frac{t}{T_{\mathrm{~max}}}\end{array}\right.\right)\mathrm{e}^{-c} \\ &c=\sum_{i=1}^{N}\sqrt{\sum_{j=1}^{\dim}( x_{j}^{i}-\overline{x}^{j} )^{2}}\times\frac{1}{N\times D} \end{aligned}\tag{2} ω=(1T maxt)ecc=i=1Nj=1dim(xjixj)2 ×N×D1(2)

其中,搜索空间的最长对角线的距离为:
D = ∑ j = 1 dim ⁡ ( u b j − l b j ) 2 (3) D=\sqrt{\sum_{j=1}^{\dim}(ub_j-lb_j)^2}\tag{3} D=j=1dim(ubjlbj)2 (3)

考虑到优化整个樽海鞘群算法的性能, 将此处的自适应权重策略与无标度网络策略结合得出一个最终的追随者位置更新公式:
x j i = 1 2 ( ω × x j i + r 1 × x j ρ + r 2 × F j ) , ρ ∈ Neighbor ( i ) (4) x_j^i=\frac12(\omega\times x_j^i+r_1\times x_j^\rho+r_2\times F_j),\rho\in\text{Neighbor}(i)\tag{4} xji=21(ω×xji+r1×xjρ+r2×Fj),ρNeighbor(i)(4)

黄金正弦算子变异策略

黄金正弦算法对整个单位圆的搜索便类似于整个搜索空间内的寻优过程, 同时取黄金分割数以便搜索可以产生较好结果的区域并且缩小搜索的空间, 加快了算法的收敛速度. 黄金正弦算子:
X i ( t + 1 ) = X i ( t ) ∣ sin ⁡ R 1 ∣ + R 2 sin ⁡ ( R 1 ) ∣ a X i − b X i ( t ) ∣ (5) X_{i}\left(t+1\right)=X_{i}\left(t\right)\left|\sin R_{1}\left|+R_{2}\sin\left(R_{1}\right)\right|aX_{i}-bX_{i}\left(t\right)\right|\tag{5} Xi(t+1)=Xi(t)sinR1+R2sin(R1)aXibXi(t)(5)

3.结果展示

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

二维栅格路径规划

在这里插入图片描述
在这里插入图片描述

4.参考文献

[1] 赵宏伟,董昌林,丁兵如,等.路径规划问题的多策略改进樽海鞘群算法研究[J].计算机科学,2024,51(S1):202-210.

5.代码获取

这篇关于【智能算法改进】路径规划问题的多策略改进樽海鞘群算法研究的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1122668

相关文章

Pyserial设置缓冲区大小失败的问题解决

《Pyserial设置缓冲区大小失败的问题解决》本文主要介绍了Pyserial设置缓冲区大小失败的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录问题描述原因分析解决方案问题描述使用set_buffer_size()设置缓冲区大小后,buf

resultMap如何处理复杂映射问题

《resultMap如何处理复杂映射问题》:本文主要介绍resultMap如何处理复杂映射问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录resultMap复杂映射问题Ⅰ 多对一查询:学生——老师Ⅱ 一对多查询:老师——学生总结resultMap复杂映射问题

java实现延迟/超时/定时问题

《java实现延迟/超时/定时问题》:本文主要介绍java实现延迟/超时/定时问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java实现延迟/超时/定时java 每间隔5秒执行一次,一共执行5次然后结束scheduleAtFixedRate 和 schedu

如何解决mmcv无法安装或安装之后报错问题

《如何解决mmcv无法安装或安装之后报错问题》:本文主要介绍如何解决mmcv无法安装或安装之后报错问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mmcv无法安装或安装之后报错问题1.当我们运行YOwww.chinasem.cnLO时遇到2.找到下图所示这里3.

浅谈配置MMCV环境,解决报错,版本不匹配问题

《浅谈配置MMCV环境,解决报错,版本不匹配问题》:本文主要介绍浅谈配置MMCV环境,解决报错,版本不匹配问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录配置MMCV环境,解决报错,版本不匹配错误示例正确示例总结配置MMCV环境,解决报错,版本不匹配在col

Vue3使用router,params传参为空问题

《Vue3使用router,params传参为空问题》:本文主要介绍Vue3使用router,params传参为空问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录vue3使用China编程router,params传参为空1.使用query方式传参2.使用 Histo

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot首笔交易慢问题排查与优化方案

《SpringBoot首笔交易慢问题排查与优化方案》在我们的微服务项目中,遇到这样的问题:应用启动后,第一笔交易响应耗时高达4、5秒,而后续请求均能在毫秒级完成,这不仅触发监控告警,也极大影响了用户体... 目录问题背景排查步骤1. 日志分析2. 性能工具定位优化方案:提前预热各种资源1. Flowable

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.