建模杂谈系列249 增量数据的正态分布拟合

2024-08-31 01:20

本文主要是介绍建模杂谈系列249 增量数据的正态分布拟合,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

说明

从分布开始,分布又要从正态开始

假设有一批数据,只有通过在线的方式增量获得。

内容

1 生成

先通过numpy生成一堆随机数据,从3个正态分布生成,然后拼接起来。

import numpy as np
import matplotlib.pyplot as plt
from sklearn.mixture import GaussianMixture# 生成示例数据
np.random.seed(0)
data1 = np.random.normal(loc=20, scale=5, size=300)
data2 = np.random.normal(loc=50, scale=10, size=700)
data3 = np.random.normal(loc=70, scale=30, size=500)
data = np.concatenate([data1, data2,data3])array([28.82026173, 22.00078604, 24.89368992, 31.204466  , 29.33778995,15.1136106 , 24.75044209, 19.24321396, 19.48390574, 22.05299251...

接下来,我们看算法对这些数据的拟合结果。

2 拟合

增量计算方差的算法是基于Welford的在线算法,它是一种被广泛接受的用于在线统计的稳定算法。

class IncrementalStats:def __init__(self):self.n = 0self.mean = 0.0self.m2 = 0.0def add_data(self, x):self.n += 1delta = x - self.meanself.mean += delta / self.ndelta2 = x - self.meanself.m2 += delta * delta2def get_mean(self):return self.meandef get_variance(self):if self.n < 2:return 0.0return self.m2 / (self.n - 1)def get_std(self):return self.get_variance() ** 0.5# 初始化增量统计对象
stats = IncrementalStats()# 逐条添加数据并更新统计量
for i,x in enumerate(data):if i +1== 300:print('>>>>>>>>>>>>>>>>>>>>>>>>>',i)if i +1  == 1000:print('>>>>>>>>>>>>>>>>>>>>>>>>>',i)stats.add_data(x)print(f"After adding {x}: Mean = {stats.get_mean():.2f}, Variance = {stats.get_variance():.2f}, Std={stats.get_std():.2f}")print(f"Final Mean = {stats.get_mean():.2f}, Final Variance = {stats.get_variance():.2f}, Final Std={stats.get_std():.2f}")

第一段:刚开始拟合,在一阵波动之后,很快就接近真相了
在这里插入图片描述
第二段:在第一波结束的时候,已经非常接近真相了

在这里插入图片描述
第三段:在混入了两个正态时候,已经远远偏离了上一波的稳定状态(mean=20,std=5)。方差还有点像两个分布的方差和,均值就不是了。

在这里插入图片描述
第四段:结束时,全部都混在一起,分不出来了。
在这里插入图片描述

3 结论

  • 1 证明了方法是有效的,如果只有一个正态,可以稳定下来
  • 2 可以用来判别之前的正态在复杂环境下已经变化了(均值和方差偏移)
  • 3 如果叠加贝叶斯推断,我们可以发现在哪里发生转变了,从而开始重新拟合

这篇关于建模杂谈系列249 增量数据的正态分布拟合的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1122479

相关文章

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

Java整合Protocol Buffers实现高效数据序列化实践

《Java整合ProtocolBuffers实现高效数据序列化实践》ProtocolBuffers是Google开发的一种语言中立、平台中立、可扩展的结构化数据序列化机制,类似于XML但更小、更快... 目录一、Protocol Buffers简介1.1 什么是Protocol Buffers1.2 Pro

Python实现数据可视化图表生成(适合新手入门)

《Python实现数据可视化图表生成(适合新手入门)》在数据科学和数据分析的新时代,高效、直观的数据可视化工具显得尤为重要,下面:本文主要介绍Python实现数据可视化图表生成的相关资料,文中通过... 目录前言为什么需要数据可视化准备工作基本图表绘制折线图柱状图散点图使用Seaborn创建高级图表箱线图热

MySQL数据脱敏的实现方法

《MySQL数据脱敏的实现方法》本文主要介绍了MySQL数据脱敏的实现方法,包括字符替换、加密等方法,通过工具类和数据库服务整合,确保敏感信息在查询结果中被掩码处理,感兴趣的可以了解一下... 目录一. 数据脱敏的方法二. 字符替换脱敏1. 创建数据脱敏工具类三. 整合到数据库操作1. 创建服务类进行数据库

MySQL中处理数据的并发一致性的实现示例

《MySQL中处理数据的并发一致性的实现示例》在MySQL中处理数据的并发一致性是确保多个用户或应用程序同时访问和修改数据库时,不会导致数据冲突、数据丢失或数据不一致,MySQL通过事务和锁机制来管理... 目录一、事务(Transactions)1. 事务控制语句二、锁(Locks)1. 锁类型2. 锁粒