建模杂谈系列249 增量数据的正态分布拟合

2024-08-31 01:20

本文主要是介绍建模杂谈系列249 增量数据的正态分布拟合,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

说明

从分布开始,分布又要从正态开始

假设有一批数据,只有通过在线的方式增量获得。

内容

1 生成

先通过numpy生成一堆随机数据,从3个正态分布生成,然后拼接起来。

import numpy as np
import matplotlib.pyplot as plt
from sklearn.mixture import GaussianMixture# 生成示例数据
np.random.seed(0)
data1 = np.random.normal(loc=20, scale=5, size=300)
data2 = np.random.normal(loc=50, scale=10, size=700)
data3 = np.random.normal(loc=70, scale=30, size=500)
data = np.concatenate([data1, data2,data3])array([28.82026173, 22.00078604, 24.89368992, 31.204466  , 29.33778995,15.1136106 , 24.75044209, 19.24321396, 19.48390574, 22.05299251...

接下来,我们看算法对这些数据的拟合结果。

2 拟合

增量计算方差的算法是基于Welford的在线算法,它是一种被广泛接受的用于在线统计的稳定算法。

class IncrementalStats:def __init__(self):self.n = 0self.mean = 0.0self.m2 = 0.0def add_data(self, x):self.n += 1delta = x - self.meanself.mean += delta / self.ndelta2 = x - self.meanself.m2 += delta * delta2def get_mean(self):return self.meandef get_variance(self):if self.n < 2:return 0.0return self.m2 / (self.n - 1)def get_std(self):return self.get_variance() ** 0.5# 初始化增量统计对象
stats = IncrementalStats()# 逐条添加数据并更新统计量
for i,x in enumerate(data):if i +1== 300:print('>>>>>>>>>>>>>>>>>>>>>>>>>',i)if i +1  == 1000:print('>>>>>>>>>>>>>>>>>>>>>>>>>',i)stats.add_data(x)print(f"After adding {x}: Mean = {stats.get_mean():.2f}, Variance = {stats.get_variance():.2f}, Std={stats.get_std():.2f}")print(f"Final Mean = {stats.get_mean():.2f}, Final Variance = {stats.get_variance():.2f}, Final Std={stats.get_std():.2f}")

第一段:刚开始拟合,在一阵波动之后,很快就接近真相了
在这里插入图片描述
第二段:在第一波结束的时候,已经非常接近真相了

在这里插入图片描述
第三段:在混入了两个正态时候,已经远远偏离了上一波的稳定状态(mean=20,std=5)。方差还有点像两个分布的方差和,均值就不是了。

在这里插入图片描述
第四段:结束时,全部都混在一起,分不出来了。
在这里插入图片描述

3 结论

  • 1 证明了方法是有效的,如果只有一个正态,可以稳定下来
  • 2 可以用来判别之前的正态在复杂环境下已经变化了(均值和方差偏移)
  • 3 如果叠加贝叶斯推断,我们可以发现在哪里发生转变了,从而开始重新拟合

这篇关于建模杂谈系列249 增量数据的正态分布拟合的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1122479

相关文章

Redis的数据过期策略和数据淘汰策略

《Redis的数据过期策略和数据淘汰策略》本文主要介绍了Redis的数据过期策略和数据淘汰策略,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录一、数据过期策略1、惰性删除2、定期删除二、数据淘汰策略1、数据淘汰策略概念2、8种数据淘汰策略

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

Python给Excel写入数据的四种方法小结

《Python给Excel写入数据的四种方法小结》本文主要介绍了Python给Excel写入数据的四种方法小结,包含openpyxl库、xlsxwriter库、pandas库和win32com库,具有... 目录1. 使用 openpyxl 库2. 使用 xlsxwriter 库3. 使用 pandas 库

SpringBoot定制JSON响应数据的实现

《SpringBoot定制JSON响应数据的实现》本文主要介绍了SpringBoot定制JSON响应数据的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录前言一、如何使用@jsonView这个注解?二、应用场景三、实战案例注解方式编程方式总结 前言

使用Python在Excel中创建和取消数据分组

《使用Python在Excel中创建和取消数据分组》Excel中的分组是一种通过添加层级结构将相邻行或列组织在一起的功能,当分组完成后,用户可以通过折叠或展开数据组来简化数据视图,这篇博客将介绍如何使... 目录引言使用工具python在Excel中创建行和列分组Python在Excel中创建嵌套分组Pyt

在Rust中要用Struct和Enum组织数据的原因解析

《在Rust中要用Struct和Enum组织数据的原因解析》在Rust中,Struct和Enum是组织数据的核心工具,Struct用于将相关字段封装为单一实体,便于管理和扩展,Enum用于明确定义所有... 目录为什么在Rust中要用Struct和Enum组织数据?一、使用struct组织数据:将相关字段绑

在Mysql环境下对数据进行增删改查的操作方法

《在Mysql环境下对数据进行增删改查的操作方法》本文介绍了在MySQL环境下对数据进行增删改查的基本操作,包括插入数据、修改数据、删除数据、数据查询(基本查询、连接查询、聚合函数查询、子查询)等,并... 目录一、插入数据:二、修改数据:三、删除数据:1、delete from 表名;2、truncate

Java实现Elasticsearch查询当前索引全部数据的完整代码

《Java实现Elasticsearch查询当前索引全部数据的完整代码》:本文主要介绍如何在Java中实现查询Elasticsearch索引中指定条件下的全部数据,通过设置滚动查询参数(scrol... 目录需求背景通常情况Java 实现查询 Elasticsearch 全部数据写在最后需求背景通常情况下

Java中注解与元数据示例详解

《Java中注解与元数据示例详解》Java注解和元数据是编程中重要的概念,用于描述程序元素的属性和用途,:本文主要介绍Java中注解与元数据的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参... 目录一、引言二、元数据的概念2.1 定义2.2 作用三、Java 注解的基础3.1 注解的定义3.2 内

将sqlserver数据迁移到mysql的详细步骤记录

《将sqlserver数据迁移到mysql的详细步骤记录》:本文主要介绍将SQLServer数据迁移到MySQL的步骤,包括导出数据、转换数据格式和导入数据,通过示例和工具说明,帮助大家顺利完成... 目录前言一、导出SQL Server 数据二、转换数据格式为mysql兼容格式三、导入数据到MySQL数据