零基础入门转录组数据分析——单基因ROC分析

2024-08-30 15:52

本文主要是介绍零基础入门转录组数据分析——单基因ROC分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

零基础入门转录组数据分析——单基因ROC分析

目录

  • 零基础入门转录组数据分析——单基因ROC分析
    • 1. ROC分析的基础知识
    • 2. 单基因ROC分析(Rstudio)——代码实操
      • 2. 1 数据处理
      • 2. 2 单基因ROC分析
      • 2. 3 ROC曲线简单可视化



1. ROC分析的基础知识

1.1 ROC分析是什么?
ROC(Receiver Operating Characteristic)分析是一种用于评估判断准确性的统计方法。它通过将灵敏度和特异度结合起来,以图示的方式展示在不同临界值下,是否能正确判断阳性和阴性样本的能力。

1.2 ROC分析的基本原理?
ROC曲线是通过一系列不同的二分类方式(临界值或决定阈),计算诊断结果的真阳性率和假阳性率,以真阳性率(灵敏度)为纵坐标,假阳性率(1-特异度)为横坐标绘制的曲线,用曲线下面积(AUC)作为衡量预测准确性的指标。

1.3 ROC分析的主要用途?

  • 评估诊断性能: 在生信领域,ROC分析用于评估诊断的性能。通过ROC曲线和曲线下面积(AUC),可以量化区分不同分组的准确性,帮助选择出相对重要的基因。
  • 模型评估: 在机器学习和统计建模中,ROC分析用于评估分类模型的性能。通过比较不同模型的ROC曲线和AUC值,可以选择出最优的模型。
  • 阈值选择: ROC分析可以帮助确定分类或诊断的最佳阈值。通过观察ROC曲线上的不同点,并结合实际需求(如灵敏度和特异度的平衡),可以选择出最合适的阈值。

1.4 ROC分析的优点?

  • 综合评估: ROC曲线将灵敏度和特异度结合在一起,以图示的方式展示诊断或分类方法的整体性能,便于直观理解和评估。
  • 不固定阈值: ROC分析不依赖于特定的分类阈值,而是展示了在不同阈值下的性能变化,有利于使用者根据实际需求选择合适的阈值。
  • 标准化评估: AUC值作为ROC曲线下的面积,提供了一个标准化的评估指标,便于不同测试或方法之间的比较。
  • 适用于不平衡数据集: 在正负样本不平衡的数据集中,ROC分析仍然能够提供一个相对稳定的评估结果,因为AUC值不受样本比例的影响。

举个栗子: 现在有8个样本,1个基因,每个样本对应该基因都有表达量。其中4个样本为疾病组,另外4个样本为对照组。4个疾病样本对应该基因的表达量分别为1,1.1,1.2,1.2;4个对照样本对应该基因的表达量分别为0.5,0.6,0.5,0.7这样可以明显看出疾病样本中该基因为高表达,那么用该基因的表达水平进行ROC分析,它的AUC值就是1,可以完美区分疾病样本和对照样本。

综上所述: ROC分析就是评估区分准确性的方法,不仅能评估单个变量的区分准确性,还能评估模型的区分准确性。

在本章节中仅用单个基因为例来展示如何进行ROC分析,对于模型的ROC分析不做展示

注意:ROC曲线对极端值(如极少数的极端高或低预测值)较为敏感。这些极端值可能会扭曲ROC曲线的形状,从而影响判断的准确性。



2. 单基因ROC分析(Rstudio)——代码实操

本项目以TCGA——肺腺癌为例展开分析
物种:人类(Homo sapiens)
R版本:4.2.2
R包:tidyverse, pROC

废话不多说,代码如下:

2. 1 数据处理

设置工作空间:

rm(list = ls()) # 删除工作空间中所有的对象
setwd('/XX/XX/XX') # 设置工作路径
if(!dir.exists('./19_ROC')){dir.create('./19_ROC')
} 
setwd('./19_ROC/') 

加载包:

library(pROC)
library(tidyverse)

导入要分析的表达矩阵TrainRawData,并对TrainRawData的列名进行处理(这是因为在读入的时候系统会默认把样本id中的“-”替换成“.”,所以要给替换回去

TrainRawData <- read.csv("./data_fpkm.csv", row.names = 1, check.names = F)  # 行名为全部基因名,每列为样本名
colnames(TrainRawData) <- gsub('.', '-', colnames(TrainRawData), fixed = T)

TrainRawData如下图所示,行为基因名(symbol),列为样本名
在这里插入图片描述
导入分组信息表TrainGroup

TrainGroup <- read.csv("./data_group.csv", row.names = 1) # 为每个样本的分组信息(tumor和control)
colnames(TrainGroup) <- c('sample', 'group')

TrainGroup 如下图所示,第一列sample为样本名,第二列为样本对应的分组 (分组为二分类变量:disease和control)
在这里插入图片描述
导入要用于分析的基因HubGene (1个基因,这里只用一个基因作为展示)

HubGene <- data.frame(symbol = 'VDAC1')

HubGene 如下图所示,只有一列:1个基因的基因名

在这里插入图片描述

TrainRawData中取出这1个基因对应的表达矩阵,并且与之前准备的分组信息表TrainGroup进行合并

TrainData <- TrainRawData[HubGene$symbol, ] %>% t() %>% as.data.frame()
TrainData <- merge(TrainData, TrainGroup, by.x = "row.names", by.y = 'sample')
TrainData <- column_to_rownames(TrainData, var = 'Row.names')

TrainData 如下图所示,行为样本名,第一列为基因的表达量,第二列为分组信息(这里是disease和control)。
在这里插入图片描述

2. 2 单基因ROC分析

直接通过roc函数进行单基因ROC分析

  • response = TrainData$group —— 这个参数指定了真实的目标变量或类别标签,简单说就是想要预测的分组
  • predictor = TrainData[, 1] —— 这个参数指定了要参与预测的变量,这里是TrainData的第一列,也就是前面提到的VDAC1表达量
  • levels = c(‘control’, ‘disease’) —— 这个参数指定了response变量中类别的顺序,用于ROC曲线的计算。在这里,它告诉roc函数’control’是负类(或参考类),而’disease’是正类。(注意:这个levels非常重要,设置参考类如果反了,那么相应的结果也会是反的)
roc <- roc(response = TrainData$group, predictor = TrainData[, 1],levels = c('control', 'disease'))
roc$auc

roc$auc如下图所示,表明曲线下面积(Area under the curve, AUC)为0.8867(AUC越接近于1表明预测准确性越高)。

在这里插入图片描述

2. 3 ROC曲线简单可视化

接下来一步就是要对ROC分析结果进行简单可视化,毕竟文字的展示效果不如图片更加直观。

plot(roc, main = paste0("ROC Curve for Disease Prediction of ", colnames(TrainData)[1]), # 设置主标题col = "#DD7123", # 设置曲线颜色lwd = 2,  # 线条宽度print.auc = T, # 打印AUC的值print.auc.x = 0.4, # AUC值得位置(x轴)print.auc.y = 0.5, # AUC值得位置(y轴)print.auc.pattern = 'AUC=%.3f', # AUC值得格式,表明保留三位小数print.auc.cex = 1.2,  # AUC值字体大小grid = c(0.5,0.2), # 网格线设置grid.col = "gray", # 网格线颜色xlab = "False Positive Rate (1 - Specificity)",  # x轴标签  ylab = "True Positive Rate (Sensitivity)",  # y轴标签 font.lab = 2,  # 轴标签字体样式  cex.axis = 1.2,  # 轴标签字体大小  cex.main = 1.5  # 主标题字体大小  )

ROC曲线如下图所示

  • 横坐标 —— 假阳性率(False Positive Rate, FPR),也称为1-特异性或误报率。它表示在所有实际为阴性的样本中,被错误地判断为阳性的比例。FPR的值越接近0,说明模型的误报率越低,即模型在判断为阳性的样本中,真正为阴性的样本占比越少。
  • 纵坐标 —— 真阳性率(True Positive Rate, TPR):也称为敏感度或真正率。它表示在所有实际为阳性的样本中,被正确地判断为阳性的比例。TPR的值越接近1,说明模型的敏感度越高,即模型能够准确地识别出更多的真正阳性样本。
  • 曲线位置 —— ROC曲线越靠近左上角(FPR越小,TPR越大),说明模型的预测准确率越高,这是因为左上角的点代表了最低的误报率和最高的真正率。
  • 曲线下面积(AUC) —— AUC值用于量化地表示模型的预测准确性。AUC值越高,说明模型的预测性能越好。AUC值在0.5到1之间,当AUC值等于0.5时,表示模型没有预测价值(即随机猜测);当AUC值大于0.7时,通常认为具有较高的诊断价值。

在这里插入图片描述



结语:

以上就是单基因ROC分析的所有过程,如果有什么需要补充或不懂的地方,大家可以私聊我或者在下方评论。

如果觉得本教程对你有所帮助,希望广大学习者能够花点自己的小钱支持一下(点赞旁的打赏按钮)作者创作(可以的话一杯蜜雪奶茶即可),感谢大家的支持~~~~~~ ^_^ !!!

祝大家能够开心学习,轻松学习,在学习的路上少一些坎坷~~~

请添加图片描述


  • 目录部分跳转链接:零基础入门生信数据分析——导读

这篇关于零基础入门转录组数据分析——单基因ROC分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1121262

相关文章

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

从入门到精通MySQL联合查询

《从入门到精通MySQL联合查询》:本文主要介绍从入门到精通MySQL联合查询,本文通过实例代码给大家介绍的非常详细,需要的朋友可以参考下... 目录摘要1. 多表联合查询时mysql内部原理2. 内连接3. 外连接4. 自连接5. 子查询6. 合并查询7. 插入查询结果摘要前面我们学习了数据库设计时要满

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

从入门到精通C++11 <chrono> 库特性

《从入门到精通C++11<chrono>库特性》chrono库是C++11中一个非常强大和实用的库,它为时间处理提供了丰富的功能和类型安全的接口,通过本文的介绍,我们了解了chrono库的基本概念... 目录一、引言1.1 为什么需要<chrono>库1.2<chrono>库的基本概念二、时间段(Durat

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

解析C++11 static_assert及与Boost库的关联从入门到精通

《解析C++11static_assert及与Boost库的关联从入门到精通》static_assert是C++中强大的编译时验证工具,它能够在编译阶段拦截不符合预期的类型或值,增强代码的健壮性,通... 目录一、背景知识:传统断言方法的局限性1.1 assert宏1.2 #error指令1.3 第三方解决

python中Hash使用场景分析

《python中Hash使用场景分析》Python的hash()函数用于获取对象哈希值,常用于字典和集合,不可变类型可哈希,可变类型不可,常见算法包括除法、乘法、平方取中和随机数哈希,各有优缺点,需根... 目录python中的 Hash除法哈希算法乘法哈希算法平方取中法随机数哈希算法小结在Python中,

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重

从入门到精通MySQL 数据库索引(实战案例)

《从入门到精通MySQL数据库索引(实战案例)》索引是数据库的目录,提升查询速度,主要类型包括BTree、Hash、全文、空间索引,需根据场景选择,建议用于高频查询、关联字段、排序等,避免重复率高或... 目录一、索引是什么?能干嘛?核心作用:二、索引的 4 种主要类型(附通俗例子)1. BTree 索引(