【unity实战】使用新版输入系统Input System+Rigidbody实现第三人称人物控制器

本文主要是介绍【unity实战】使用新版输入系统Input System+Rigidbody实现第三人称人物控制器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最终效果

在这里插入图片描述

前言

使用CharacterController实现3d角色控制器,之前已经做过很多了:
【unity小技巧】unity最完美的CharacterController 3d角色控制器,实现移动、跳跃、下蹲、奔跑、上下坡、物理碰撞效果,复制粘贴即用
【unity实战】Cinemachine虚拟相机+Character Controller实现俯视角、第三人称角色控制,复制粘贴即用

有的人就会问了,使用Rigidbody要怎么做呢?这不就来了,本文主要是使用新版输入系统Input System+Rigidbody实现第三人称人物控制器,我就不做特别复杂了,其他内容欢迎大家自行补充。因为我也不是很推荐大家使用Rigidbody,CharacterController 其实已经可以满足我们开发中的所有需求了。Rigidbody定义一些CharacterController自带的功能真的非常麻烦,比如爬坡,走楼梯等等,所以我这里主要只是带大家了解一下,并不会深入研究。

使用Input System获取玩家输入

参考:【推荐100个unity插件之18】Unity 新版输入系统Input System的使用,看这篇就够了

我这里直接使用Player Input组件,生成的默认的Input Actions映射
在这里插入图片描述
新增脚本获取玩家输入

/// <summary>
/// 玩家输入
/// </summary>
public class PlayerInput : MonoBehaviour
{// 用于存储移动输入的向量public Vector2 MoveInput { get; private set; }// 用于存储视角输入的向量public Vector2 LookInput { get; private set; }public bool ChangeCameraWasPressedThisFrame{get; private set; }//是否按下切换相机private InputActions _input;private void OnEnable(){_input = new InputActions();_input.Player.Enable();_input.Player.Move.performed += SetMove;_input.Player.Move.canceled += SetMove;_input.Player.Look.performed += SetLook;_input.Player.Look.canceled += SetLook;}private void OnDisable(){_input.Player.Move.performed -= SetMove;_input.Player.Move.canceled -= SetMove;_input.Player.Look.performed -= SetLook;_input.Player.Look.canceled -= SetLook;_input.Player.Disable();  }private void SetMove(InputAction.CallbackContext context){MoveInput = context.ReadValue<Vector2>();}private void SetLook(InputAction.CallbackContext context){LookInput = context.ReadValue<Vector2>();}
}

人物添加刚体

添加刚体,配置参数
在这里插入图片描述

控制角色移动

新增脚本控制角色移动,对这里的AddRelativeForce不太了解的小伙伴可以查看我这篇文章:
【unity小技巧】常用的方法属性和技巧汇总(长期更新)
在这里插入图片描述

public class PlayerController : PlayerInput
{Rigidbody _rb;[Header("移动")][SerializeField] float _speed= 1000f;// 移动的速度private void Awake(){_rb = GetComponent<Rigidbody>();}private void FixedUpdate(){PlayerMove();}// 计算并应用玩家的移动private void PlayerMove(){// 根据输入和速度计算移动向量_playerMoveInput = new Vector3(MoveInput.x, 0, MoveInput.y).normalized * _speed;// 将相对力应用到刚体上_rb.AddRelativeForce(_playerMoveInput, ForceMode.Force);}
}

配置
在这里插入图片描述

效果
在这里插入图片描述

手搓代码控制相机视角

修改PlayerInput

[Header("相机视角控制")]
public Transform CameraFollow;// 用于跟随摄像机的 Transform
private Vector3 _playerLookInput;// 玩家视角输入
private float _playerRotation;// 角色旋转角度
private float _cameraPitch;// 摄像机俯仰角度
[SerializeField] float _rotationSpeed = 180.0f;// 角色旋转速度
[SerializeField] float _pitchSpeed = 180.0f;// 摄像机俯仰速度private void Awake()
{_rb = GetComponent<Rigidbody>();mainCamera = Camera.main; // 获取主相机
}private void Update()
{_playerLookInput = new Vector3(LookInput.x, -LookInput.y, 0f) * Time.deltaTime;// 获取视角输入PlayerLook(); // 更新角色的旋转PitchCamera(); // 更新摄像机的俯仰角度
}// 更新角色的旋转
private void PlayerLook()
{_playerRotation += _playerLookInput.x * _rotationSpeed;_rb.rotation = Quaternion.Euler(0f, _playerRotation, 0f);
}// 更新摄像机的俯仰角度
private void PitchCamera()
{Vector3 rotationValues = CameraFollow.rotation.eulerAngles;_cameraPitch += _playerLookInput.y * _pitchSpeed;_cameraPitch = Mathf.Clamp(_cameraPitch, -89.9f, 89.9f);//限制俯仰视角角度CameraFollow.rotation = Quaternion.Euler(_cameraPitch, rotationValues.y, rotationValues.z);
}

配置相机为角色的子物体
在这里插入图片描述
效果
在这里插入图片描述

最终代码

using UnityEngine;public class PlayerController : PlayerInput
{Rigidbody _rb;[Header("移动")]Vector3 _playerMoveInput;// 玩家移动向量[SerializeField] float _speed = 1000f;// 移动的速度[Header("相机视角控制")]public Transform CameraFollow;// 用于跟随摄像机的 Transformsprivate Vector3 _playerLookInput;// 玩家视角输入private float _playerRotation;// 角色旋转角度private float _cameraPitch;// 摄像机俯仰角度[SerializeField] float _rotationSpeed = 180.0f;// 角色旋转速度[SerializeField] float _pitchSpeed = 180.0f;// 摄像机俯仰速度private Camera mainCamera; // 主相机private void Awake(){_rb = GetComponent<Rigidbody>();mainCamera = Camera.main; // 获取主相机}private void Update(){_playerLookInput = new Vector3(LookInput.x, -LookInput.y, 0f) * Time.deltaTime;// 获取视角输入PlayerLook(); // 更新角色的旋转PitchCamera(); // 更新摄像机的俯仰角度}private void FixedUpdate(){PlayerMove();}// 计算并应用玩家的移动private void PlayerMove(){// 根据输入和速度计算移动向量_playerMoveInput = new Vector3(MoveInput.x, 0, MoveInput.y).normalized * _speed;// 将相对力应用到刚体上_rb.AddRelativeForce(_playerMoveInput, ForceMode.Force);}// 更新角色的旋转private void PlayerLook(){_playerRotation += _playerLookInput.x * _rotationSpeed;_rb.rotation = Quaternion.Euler(0f, _playerRotation, 0f);}// 更新摄像机的俯仰角度private void PitchCamera(){Vector3 rotationValues = CameraFollow.rotation.eulerAngles;_cameraPitch += _playerLookInput.y * _pitchSpeed;_cameraPitch = Mathf.Clamp(_cameraPitch, -89.9f, 89.9f);//限制俯仰视角角度CameraFollow.rotation = Quaternion.Euler(_cameraPitch, rotationValues.y, rotationValues.z);}
}

源码

后面整理好了再补充

完结

赠人玫瑰,手有余香!如果文章内容对你有所帮助,请不要吝啬你的点赞评论和关注,你的每一次支持都是我不断创作的最大动力。当然如果你发现了文章中存在错误或者有更好的解决方法,也欢迎评论私信告诉我哦!

好了,我是向宇,https://xiangyu.blog.csdn.net

一位在小公司默默奋斗的开发者,闲暇之余,边学习边记录分享,站在巨人的肩膀上,通过学习前辈们的经验总是会给我很多帮助和启发!如果你遇到任何问题,也欢迎你评论私信或者加群找我, 虽然有些问题我也不一定会,但是我会查阅各方资料,争取给出最好的建议,希望可以帮助更多想学编程的人,共勉~
在这里插入图片描述

这篇关于【unity实战】使用新版输入系统Input System+Rigidbody实现第三人称人物控制器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1120806

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置