UE5 摄像机图像采集到材质 映射到 UI 和 物体表面

2024-08-30 10:20

本文主要是介绍UE5 摄像机图像采集到材质 映射到 UI 和 物体表面,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一.创建SceneCapture2D的组件

二.创建用于 映射的 贴图

三.将RenderTarget贴图放到SceneCapture2D的摄像机上Scene Capture的TextureTarget

四.这个时候的映射贴图,产生的材质可以直接。放到Plane上。

五,但是如果要用于UI,还需要更改SceneCapture2D的摄像机的CaptureSource为 FinalColor(LDR)。或者其它的,原来默认的 会让UI变为透明效果

 

效果如下:

UI

Plane

但这个方法,性能直接从120降到70,80的样子。慎重

这篇关于UE5 摄像机图像采集到材质 映射到 UI 和 物体表面的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1120546

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

基于UE5和ROS2的激光雷达+深度RGBD相机小车的仿真指南(五):Blender锥桶建模

前言 本系列教程旨在使用UE5配置一个具备激光雷达+深度摄像机的仿真小车,并使用通过跨平台的方式进行ROS2和UE5仿真的通讯,达到小车自主导航的目的。本教程默认有ROS2导航及其gazebo仿真相关方面基础,Nav2相关的学习教程可以参考本人的其他博客Nav2代价地图实现和原理–Nav2源码解读之CostMap2D(上)-CSDN博客往期教程: 第一期:基于UE5和ROS2的激光雷达+深度RG

Verybot之OpenCV应用一:安装与图像采集测试

在Verybot上安装OpenCV是很简单的,只需要执行:         sudo apt-get update         sudo apt-get install libopencv-dev         sudo apt-get install python-opencv         下面就对安装好的OpenCV进行一下测试,编写一个通过USB摄像头采

UE5 半透明阴影 快速解决方案

Step 1: 打开该选项 Step 2: 将半透明材质给到模型后,设置光照的Shadow Resolution Scale,越大,阴影的效果越好

【电子通识】半导体工艺——保护晶圆表面的氧化工艺

在文章【电子通识】半导体工艺——晶圆制造中我们讲到晶圆的一些基础术语和晶圆制造主要步骤:制造锭(Ingot)、锭切割(Wafer Slicing)、晶圆表面抛光(Lapping&Polishing)。         那么其实当晶圆暴露在大气中或化学物质中的氧气时就会形成氧化膜。这与铁(Fe)暴露在大气时会氧化生锈是一样的道理。 氧化膜的作用         在半导体晶圆

Golang GUI入门——andlabs ui

官方不提供gui标准库,只好寻求第三方库。 https://github.com/google/gxui 这个gui库是谷歌内部人员提供的,并不是谷歌官方出品,现在停止维护,只好作罢。 第三方gui库 找了好多,也比较了好多,最终决定使用的是还是 https://github.com/andlabs/ui 相信golang gui还会发展的更好,期待更优秀的gui库 由于andlabs

【python计算机视觉编程——7.图像搜索】

python计算机视觉编程——7.图像搜索 7.图像搜索7.1 基于内容的图像检索(CBIR)从文本挖掘中获取灵感——矢量空间模型(BOW表示模型)7.2 视觉单词**思想****特征提取**: 创建词汇7.3 图像索引7.3.1 建立数据库7.3.2 添加图像 7.4 在数据库中搜索图像7.4.1 利用索引获取获选图像7.4.2 用一幅图像进行查询7.4.3 确定对比基准并绘制结果 7.

【python计算机视觉编程——8.图像内容分类】

python计算机视觉编程——8.图像内容分类 8.图像内容分类8.1 K邻近分类法(KNN)8.1.1 一个简单的二维示例8.1.2 用稠密SIFT作为图像特征8.1.3 图像分类:手势识别 8.2贝叶斯分类器用PCA降维 8.3 支持向量机8.3.2 再论手势识别 8.4 光学字符识别8.4.2 选取特征8.4.3 多类支持向量机8.4.4 提取单元格并识别字符8.4.5 图像校正

HalconDotNet中的图像特征与提取详解

文章目录 简介一、边缘特征提取二、角点特征提取三、区域特征提取四、纹理特征提取五、形状特征提取 简介   图像特征提取是图像处理中的一个重要步骤,用于从图像中提取有意义的特征,以便进行进一步的分析和处理。HalconDotNet提供了多种图像特征提取方法,每种方法都有其特定的应用场景和优缺点。 一、边缘特征提取   边缘特征提取是图像处理中最基本的特征提取方法之一,通过检