深度强化学习算法(五)(附带MATLAB程序)

2024-08-29 06:12

本文主要是介绍深度强化学习算法(五)(附带MATLAB程序),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

深度强化学习(Deep Reinforcement Learning, DRL)结合了深度学习和强化学习的优点,能够处理具有高维状态和动作空间的复杂任务。它的核心思想是利用深度神经网络来逼近强化学习中的策略函数和价值函数,从而提高学习能力和决策效率。

一、关键算法分类

1.1 深度 Q 网络(Deep Q-Network, DQN)
  • 概念:将 Q 学习(一个值函数方法)与深度神经网络结合,用于近似 Q 值函数。
  • 特点:使用经验回放和固定 Q 目标网络来稳定训练过程。
  • 应用:成功应用于 Atari 游戏等环境。
 1.2 双重 Q 学习(Double Q-Learning)
  • 概念:解决 DQN 中 Q 值过估计的问题,通过引入两个 Q 网络来减少过估计。
  • 特点:使用两个独立的 Q 网络交替更新,以减少 Q 值的过高估计。
1.3 优先经验回放(Prioritized Experience Replay)
  • 概念:对经验回放进行优先级排序,以更频繁地训练那些“重要”的样本。
  • 特点:提高了训练的效率和稳定性。
1.4 深度确定性策略梯度(Deep Deterministic Policy Gradient, DDPG)
  • 概念:适用于连续动作空间的策略梯度算法。
  • 特点:使用策略网络和价值网络来逼近策略和价值函数,并利用经验回放和目标网络来稳定训练。
1.5策略梯度方法(Policy Gradient Methods)
  • 概念:直接优化策略函数,通过梯度上升来最大化预期累积回报。
  • 特点:适合处理大规模或连续动作空间。
1.6近端策略优化(Proximal Policy Optimization, PPO)
  • 概念:通过引入一个“剪切”操作来限制每次策略更新的幅度,确保训练稳定。
  • 特点:简单且有效,广泛应用于各种任务。
1.7演员-评论家方法(Actor-Critic Methods)
  • 概念:结合了策略优化(演员)和价值函数(评论家)的方法。
  • 特点:演员负责更新策略,而评论家负责估计价值函数,用于指导演员更新策略。

二、策略梯度方法(Policy Gradient Methods)公式推导

策略梯度方法(Policy Gradient Methods)的核心在于优化策略函数,以最大化累积奖励。下面是策略梯度方法公式的详细推导过程。

2.1目标函数定义

我们首先定义一个目标函数 J\left ( \theta \right ),它表示在当前策略下的期望累计奖励。假设我们的目标是最大化从状态分布p\left ( s \right ) 中采样的累计奖励。目标函数可以表示为:J\left ( \theta \right )=IE _{\pi \theta}\left [ R \right ] 其中R 是累积奖励,\pi _{\theta }\left ( a|s \right )是给定参数\theta的策略函数

2.2期望累计奖励

为了更详细地推导,我们可以使用以下定义的累积奖励:

R_{t}=\sum _{k=t}^{T}\textrm{}\gamma ^{k-t}r_{k}

其中 r_{k}是在时间步k获得的奖励,\gamma是折扣因子。

 期望累计奖励可以表示为:

J\left ( \theta \right )=IE_{\pi \theta }\left [ \sum _{t=0}^{T}\textrm{} \gamma ^{t}r^{t}\right ]

2.3策略梯度定理

根据策略梯度定理,我们需要计算目标函数 J\left ( \theta \right )关于\theta的梯度。首先,对目标函数 J\left ( \theta \right )取梯度:

\bigtriangledown_{\theta } J\left ( \theta \right )=\bigtriangledown _{\theta }IE_{\pi \theta }\left [ \sum _{t=0}^{T}\textrm{} \gamma ^{t}r^{t}\right ]

2.4梯度的计算

利用期望的性质,我们可以将梯度移到期望外部:

\bigtriangledown_{\theta } J\left ( \theta \right )=IE_{\pi \theta }\left [ \sum _{t=0}^{T}\textrm{} \gamma ^{t}r^{t}\right ]

梯度操作可以分开到每一项: 

\bigtriangledown_{\theta } J\left ( \theta \right )=IE_{\pi \theta }\left [ \sum _{t=0}^{T}\textrm{}\bigtriangledown _{\theta } \gamma ^{t}r^{t}\right ]

我们利用策略导数定理,将奖励 rtr_trt​ 写作策略的函数:

\bigtriangledown _{\theta }r_{t}=\bigtriangledown _{\theta }\left ( log\pi_{\theta } \left ( a_{t}|s_{t} \right )\cdot \pi _{\theta }\left ( a_{t}|s_{t} \right )Q^{\pi }\left ( a_{t}|s_{t} \right )\right )

可以通过以下简化:

\bigtriangledown _{\theta }( log\pi_{\theta } \left ( a_{t}|s_{t} \right )=\frac{\bigtriangledown _{\theta }\pi_{\theta } \left ( a_{t}|s_{t} \right )}{\pi_{\theta } \left ( a_{t}|s_{t} \right )}

于是:

\bigtriangledown _{\theta } \pi _{\theta }\left ( a_{t}|s_{t} \right )Q^{\pi }\left ( a_{t}|s_{t} \right )=\bigtriangledown _{\theta } \pi _{\theta }\left ( a_{t}|s_{t} \right )Q^{\pi }\left ( a_{t}|s_{t} \right )+\pi _{\theta }\left ( a_{t}|s_{t} \right )\bigtriangledown _{\theta } Q^{\pi }\left ( a_{t}|s_{t} \right )

最终:

\bigtriangledown_{\theta } J\left ( \theta \right )=IE_{\pi \theta }\left [ \sum _{t=0}^{T}\textrm{}\bigtriangledown _{\theta } \gamma ^{t}log\pi_{\theta } \left ( a_{t}|s_{t} \right )R_{t}\right ]

2.5使用基线减少方差

为了减少梯度估计的方差,我们可以引入基线 b\left ({s_{t}} \right )。引入基线的目标是使梯度估计更加稳定,而不改变期望值。引入基线后的梯度计算公式是:

\bigtriangledown_{\theta } J\left ( \theta \right )=IE_{\pi \theta }\left [ \sum _{t=0}^{T}\textrm{}\bigtriangledown _{\theta } \gamma ^{t}log\pi_{\theta } \left ( a_{t}|s_{t} \right )\left (R_{t}-b\left ( s_{t} \right ) \right )\right ]

基线b\left ( s_{t} \right ) 可以是状态值函数 V^{\pi }b\left ( s_{t} \right )或者其他合适的函数。

三、MATLAB仿真程序

下面是一个简单的 MATLAB 仿真程序示例,演示如何使用策略梯度方法(Policy Gradient Methods)来训练一个简单的强化学习智能体。这个例子中,我们将使用一个简单的迷宫环境和 REINFORCE 算法(一个基本的策略梯度方法)来优化策略。

3.1定义环境

首先,我们定义迷宫环境及其属性:

function [next_state, reward, done] = simple_maze_env(state, action)% 环境的网格尺寸grid_size = [5, 5];% 目标位置goal = [5, 5];% 移动move = [0, 0];if action == 1move = [-1, 0]; % 上elseif action == 2move = [1, 0]; % 下elseif action == 3move = [0, -1]; % 左elseif action == 4move = [0, 1]; % 右endnext_state = state + move;% 确保状态在环境范围内next_state = max(min(next_state, grid_size), [1, 1]);% 奖励和完成标志if isequal(next_state, goal)reward = 1;done = true;elsereward = -0.01; % 小的负奖励以鼓励较短路径done = false;end
end
3.2策略函数

接下来,我们定义一个简单的策略函数,使用神经网络来表示策略。这里使用的是一个简单的多层感知机(MLP):

function [pi] = policy_network(state, theta)% state: 当前状态% theta: 策略网络的参数% pi: 当前状态下的策略分布(动作的概率)% 状态维度num_states = 2; % 例如 [x, y]num_actions = 4; % 上、下、左、右% 简单的线性策略网络W = reshape(theta, [num_states, num_actions]);logits = W' * state';pi = softmax(logits);
endfunction y = softmax(x)e_x = exp(x - max(x));y = e_x / sum(e_x);
end
3.3REINFORCE 算法

实现 REINFORCE 算法来训练策略网络:

function [theta] = reinforce(env, num_episodes, alpha)% 参数设置num_states = 2;num_actions = 4;% 初始化策略参数theta = rand(num_states * num_actions, 1);% 主循环for episode = 1:num_episodesstate = [1, 1]; % 起始状态done = false;episode_rewards = [];episode_states = [];episode_actions = [];while ~donepi = policy_network(state, theta);action = randsample(1:num_actions, 1, true, pi);[next_state, reward, done] = simple_maze_env(state, action);episode_states = [episode_states; state];episode_actions = [episode_actions; action];episode_rewards = [episode_rewards; reward];state = next_state;end% 计算回报T = length(episode_rewards);returns = zeros(T, 1);G = 0;for t = T:-1:1G = episode_rewards(t) + G;returns(t) = G;end% 更新策略for t = 1:Tstate = episode_states(t, :);action = episode_actions(t);pi = policy_network(state, theta);grad = zeros(num_states * num_actions, 1);grad((action - 1) * num_states + 1:num_states * action) = state';grad = grad - pi' .* grad;theta = theta + alpha * grad * (returns(t) - pi(action));endend
end
3.4运行仿真
% 参数设置
num_episodes = 1000;
alpha = 0.01;% 训练策略
theta = reinforce(@simple_maze_env, num_episodes, alpha);% 输出结果
disp('训练完成!');
disp('最终策略参数:');
disp(theta);

代码解释

  • simple_maze_env:模拟迷宫环境的函数,接受当前状态和动作,返回下一个状态、奖励和完成标志。
  • policy_network:使用简单的策略网络来计算动作的概率分布。
  • reinforce:实现 REINFORCE 算法的函数,包括策略的采样、奖励计算、策略更新等步骤。

四、总结

策略梯度方法的推导过程涵盖了如何通过直接对策略函数进行优化来提高累积奖励。核心在于利用策略梯度定理,通过计算期望奖励函数的梯度来更新策略参数 θ\thetaθ。为了改进效果,通常会引入基线来降低梯度估计的方差。

  注意:回顾以往算法可以从以下链接进入:

1、深度 Q 网络(Deep Q-Network, DQN):

深度强化学习算法(一)(附带MATLAB程序)-CSDN博客

2、双重 Q 学习(Double Q-Learning):

深度强化学习算法(二)(附带MATLAB程序)-CSDN博客

3.优先经验回放(Prioritized Experience Replay):

深度强化学习算法(三)(附带MATLAB程序)-CSDN博客

4、深度确定性策略梯度(Deep Deterministic Policy Gradient, DDPG)

深度强化学习算法(四)(附带MATLAB程序)-CSDN博客

这篇关于深度强化学习算法(五)(附带MATLAB程序)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1117066

相关文章

golang程序打包成脚本部署到Linux系统方式

《golang程序打包成脚本部署到Linux系统方式》Golang程序通过本地编译(设置GOOS为linux生成无后缀二进制文件),上传至Linux服务器后赋权执行,使用nohup命令实现后台运行,完... 目录本地编译golang程序上传Golang二进制文件到linux服务器总结本地编译Golang程序

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和