【深入解析】最优控制中的Bellman方程——从决策到最优路径的探索

本文主要是介绍【深入解析】最优控制中的Bellman方程——从决策到最优路径的探索,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【深入解析】最优控制中的Bellman方程——从决策到最优路径的探索

关键词提炼

#Bellman方程 #最优控制 #动态规划 #值函数 #策略优化 #强化学习

第一节:Bellman方程的通俗解释与核心概念

1.1 通俗解释

Bellman方程是动态规划中的一个核心概念,它像是一个“未来价值指南针”,帮助我们在面对一系列决策时,找到从当前状态出发到达目标状态的最优路径。想象一下,你站在一个迷宫入口,Bellman方程会告诉你,每一步选择哪条路能最快走出迷宫。

1.2 相似公式比对

  • 简单价值函数 V ( s ) = R ( s ) V(s) = R(s) V(s)=R(s),仅考虑当前状态s的直接奖励R(s)。
  • Bellman方程 V ( s ) = max ⁡ a ∑ s ′ P ( s ′ ∣ s , a ) [ R ( s , a , s ′ ) + γ V ( s ′ ) ] V(s) = \max_a \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V(s')] V(s)=amaxsP(ss,a)[R(s,a,s)+γV(s)],考虑了当前行动a对未来状态s’的影响及未来奖励的折现。在这里插入图片描述

第二节:Bellman方程的核心概念与应用

2.1 核心概念

核心概念定义比喻或解释
值函数V(s)在状态s下,按照最优策略行动所能获得的最大期望回报。类似于从当前位置出发,按照最佳路线到达终点所获得的“宝藏”。
状态转移概率P(s’|s,a)在状态s下采取行动a后,转移到状态s’的概率。迷宫中从当前位置选择某条路径后,到达下一个位置的可能性。
奖励函数R(s,a,s’)在状态s下采取行动a转移到状态s’所获得的即时奖励。迷宫中每走一步可能找到的“金币”或遇到的“陷阱”。
折扣因子γ用于计算未来奖励对当前价值影响的权重,通常小于1。类似于金钱的时间价值,未来的奖励不如现在的奖励“值钱”。

2.2 应用

  • 最优控制:在控制系统设计中,通过Bellman方程找到使系统性能最优的控制策略。
  • 强化学习:在智能体与环境交互的过程中,通过Bellman方程评估不同策略的价值,从而优化策略以最大化累积奖励。

2.3 优势与劣势

  • 优势:提供了一种系统化的方法来求解最优策略,适用于复杂决策过程。
  • 劣势:计算复杂度较高,特别是对于状态空间较大的问题,求解过程可能非常耗时。

第三节:公式探索与推演运算

3.1 Bellman方程的基本形式

Bellman方程的基本形式为:

V ( s ) = max ⁡ a ∑ s ′ P ( s ′ ∣ s , a ) [ R ( s , a , s ′ ) + γ V ( s ′ ) ] V(s) = \max_a \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V(s')] V(s)=amaxsP(ss,a)[R(s,a,s)+γV(s)]

其中, V ( s ) V(s) V(s)表示状态s的值函数, a a a表示可采取的行动, s ′ s' s表示采取行动 a a a后可能到达的新状态, P ( s ′ ∣ s , a ) P(s'|s,a) P(ss,a)是状态转移概率, R ( s , a , s ′ ) R(s,a,s') R(s,a,s)是奖励函数, γ \gamma γ是折扣因子。

3.2 推演运算示例

假设有一个简单的迷宫问题,状态空间为 { S 1 , S 2 , S 3 } \{S_1, S_2, S_3\} {S1,S2,S3},行动空间为 { A 1 , A 2 } \{A_1, A_2\} {A1,A2},状态转移概率和奖励函数已知。我们可以使用迭代法求解Bellman方程,逐步更新每个状态的值函数,直到收敛。

初始化

假设初始值函数为 V ( S 1 ) = 0 , V ( S 2 ) = 0 , V ( S 3 ) = 1 V(S_1) = 0, V(S_2) = 0, V(S_3) = 1 V(S1)=0,V(S2)=0,V(S3)=1(假设 S 3 S_3 S3是目标状态,直接到达获得奖励1)。

迭代过程
  • 第一次迭代

    • 对于 S 1 S_1 S1,考虑所有可能的行动和转移:
      • 若采取 A 1 A_1 A1,以概率1转移到 S 2 S_2 S2,奖励为0,则 V ( S 1 ) V(S_1) V(S1)的更新值为 γ V ( S 2 ) \gamma V(S_2) γV(S2)(假设 γ = 0.9 \gamma = 0.9 γ=0.9)。
      • …(类似地考虑其他行动和状态)
    • 更新后的 V ( S 1 ) V(S_1) V(S1)可能变为一个新的值。
  • 重复迭代

    • 不断重复上述过程,直到所有状态的值函数收敛,即连续两次迭代的值函数变化非常小。

第四节:相似公式比对

  • Bellman方程Q-learning中的Q值更新

    • 共同点:都基于未来奖励的折现来评估当前状态(或状态-行动对)的价值。
    • 不同点:Bellman方程直接评估状态的价值,而Q-learning评估状态-行动对的价值,即Q值。
  • Bellman方程策略梯度方法

    • 共同点:都用于优化策略以最大化累积奖励。
    • 不同点:策略梯度方法通过直接对策略参数进行梯度上升来优化策略,而Bellman方程则通过评估状态价值来间接优化策略。

第五节:核心代码与可视化

由于Bellman方程的求解通常涉及迭代过程,且可视化多侧重于策略或值函数的最终结果,这里提供一个简化的伪代码框架和可视化思路。

# 伪代码框架
def bellman_update(V, P, R, gamma):new_V = V.copy()for s in states:max_value = float('-inf')for a in actions:total_value = 0for s_prime, prob in P[s][a].items():total_value += prob * (R[s][a][s_prime] + gamma * V[s_prime])if total_value > max_value:max_value = total_valuenew_V[s] = max_valuereturn new_V# 可视化思路
# 使用matplotlib或seaborn绘制状态值函数V的变化图,横轴为状态,纵轴为值函数值。
# 随着迭代次数的增加,观察值函数如何逐渐收敛到稳定状态。

注意:由于Bellman方程的求解通常依赖于具体问题的模型(如状态转移概率、奖励函数等),因此上述伪代码和可视化思路需要根据实际情况进行调整。

这篇关于【深入解析】最优控制中的Bellman方程——从决策到最优路径的探索的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1116464

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

hdu2544(单源最短路径)

模板题: //题意:求1到n的最短路径,模板题#include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#i

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

poj 3259 uva 558 Wormholes(bellman最短路负权回路判断)

poj 3259: 题意:John的农场里n块地,m条路连接两块地,w个虫洞,虫洞是一条单向路,不但会把你传送到目的地,而且时间会倒退Ts。 任务是求你会不会在从某块地出发后又回来,看到了离开之前的自己。 判断树中是否存在负权回路就ok了。 bellman代码: #include<stdio.h>const int MaxN = 501;//农场数const int

poj 1734 (floyd求最小环并打印路径)

题意: 求图中的一个最小环,并打印路径。 解析: ans 保存最小环长度。 一直wa,最后终于找到原因,inf开太大爆掉了。。。 虽然0x3f3f3f3f用memset好用,但是还是有局限性。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#incl

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

【C++高阶】C++类型转换全攻略:深入理解并高效应用

📝个人主页🌹:Eternity._ ⏩收录专栏⏪:C++ “ 登神长阶 ” 🤡往期回顾🤡:C++ 智能指针 🌹🌹期待您的关注 🌹🌹 ❀C++的类型转换 📒1. C语言中的类型转换📚2. C++强制类型转换⛰️static_cast🌞reinterpret_cast⭐const_cast🍁dynamic_cast 📜3. C++强制类型转换的原因📝

深入手撕链表

链表 分类概念单链表增尾插头插插入 删尾删头删删除 查完整实现带头不带头 双向链表初始化增尾插头插插入 删查完整代码 数组 分类 #mermaid-svg-qKD178fTiiaYeKjl {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-