分类预测|基于麻雀优化核极限学习机的数据分类预测Matlab程序SSA-KELM 多特征输入多类别输出 含基础KELM

本文主要是介绍分类预测|基于麻雀优化核极限学习机的数据分类预测Matlab程序SSA-KELM 多特征输入多类别输出 含基础KELM,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

分类预测|基于麻雀优化核极限学习机的数据分类预测Matlab程序SSA-KELM 多特征输入多类别输出 含基础KELM

文章目录

  • 前言
    • 分类预测|基于麻雀优化核极限学习机的数据分类预测Matlab程序SSA-KELM 多特征输入多类别输出 含基础KELM
  • 一、SSA-KELM模型
      • SSA-KELM 分类预测的详细原理和流程
        • 1. 核极限学习机(KELM)概述
        • 2. 麻雀搜索算法(SSA)概述
        • 3. SSA-KELM 分类预测的流程
      • 总结
  • 二、实验结果
  • 三、核心代码
  • 四、代码获取
  • 五、总结


前言

分类预测|基于麻雀优化核极限学习机的数据分类预测Matlab程序SSA-KELM 多特征输入多类别输出 含基础KELM

一、SSA-KELM模型

SSA-KELM 分类预测的详细原理和流程

1. 核极限学习机(KELM)概述

核极限学习机(KELM)是极限学习机(ELM)的扩展,通过核函数映射到高维空间以增强模型的非线性处理能力。主要步骤如下:

  • 选择和设计核函数:选择适当的核函数,如高斯径向基核、多项式核等。
  • 计算隐层节点输出矩阵:通过核函数将输入数据映射到高维特征空间。
  • 求解输出权重:使用最小二乘法确定输出层的权重。
2. 麻雀搜索算法(SSA)概述

麻雀搜索算法(SSA)是一种模拟麻雀觅食行为的优化算法,包括以下步骤:

  • 初始化:随机生成麻雀种群的位置(解)。
  • 适应度评估:计算每个解的适应度值。
  • 觅食行为模拟:根据食物源(最佳解)和其他麻雀的位置更新个体位置。
  • 位置更新:通过不同的觅食策略(如局部搜索、全局搜索)更新麻雀的位置。
  • 迭代:重复上述过程,直到满足停止条件。
3. SSA-KELM 分类预测的流程
  1. 初始化 SSA

    • 随机生成一组麻雀的位置,每个位置代表 KELM 模型中的核函数参数或其他超参数。
  2. 定义适应度函数

    • 训练 KELM 模型,并评估其在验证集上的分类性能(如准确率、F1 分数)。适应度函数通常为 KELM 在验证集上的分类性能。
  3. 评估适应度

    • 对每只麻雀的位置(即 KELM 的超参数)进行训练和验证,计算其适应度值。
  4. 模拟觅食行为

    • 根据当前最优解(最佳食物源)和其他麻雀的位置,模拟觅食行为,包括局部搜索和全局搜索。更新每只麻雀的位置以优化 KELM 的超参数。
  5. 位置更新

    • 利用 SSA 的觅食行为规则更新每只麻雀的位置。通过这些更新找到最优的 KELM 超参数组合。
  6. 迭代

    • 通过反复的适应度评估和位置更新,不断优化 KELM 的超参数配置。每次迭代后更新当前最优解,直到达到终止条件(如最大迭代次数)。
  7. 最终模型

    • 使用经过 SSA 优化的 KELM 超参数训练最终的 KELM 模型。对该模型进行测试集评估,验证其分类预测性能。

总结

SSA-KELM 结合了麻雀搜索算法和核极限学习机,通过 SSA 优化 KELM 的超参数,提升了分类模型的性能。SSA 提供了全局搜索的机制来寻找最优超参数,而 KELM 利用核函数增强模型的非线性处理能力,从而提高分类预测的准确性。

二、实验结果

SSA-KELM分类结果
在这里插入图片描述

KELM分类结果
在这里插入图片描述

三、核心代码


%%  导入数据
res = xlsread('数据集.xlsx');%%  数据分析
num_size = 0.7;                              % 训练集占数据集比例
outdim = 1;                                  % 最后一列为输出
num_samples = size(res, 1);                  % 样本个数
res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input );
t_train = T_train;
t_test  = T_test;%%  转置以适应模型
p_train = p_train'; p_test = p_test';
t_train = t_train'; t_test = t_test';

四、代码获取

私信即可

五、总结

包括但不限于
优化BP神经网络,深度神经网络DNN,极限学习机ELM,鲁棒极限学习机RELM,核极限学习机KELM,混合核极限学习机HKELM,支持向量机SVR,相关向量机RVM,最小二乘回归PLS,最小二乘支持向量机LSSVM,LightGBM,Xgboost,RBF径向基神经网络,概率神经网络PNN,GRNN,Elman,随机森林RF,卷积神经网络CNN,长短期记忆网络LSTM,BiLSTM,GRU,BiGRU,TCN,BiTCN,CNN-LSTM,TCN-LSTM,BiTCN-BiGRU,LSTM–Attention,VMD–LSTM,PCA–BP等等

用于数据的分类,时序,回归预测。
多特征输入,单输出,多输出

这篇关于分类预测|基于麻雀优化核极限学习机的数据分类预测Matlab程序SSA-KELM 多特征输入多类别输出 含基础KELM的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1116208

相关文章

详谈redis跟数据库的数据同步问题

《详谈redis跟数据库的数据同步问题》文章讨论了在Redis和数据库数据一致性问题上的解决方案,主要比较了先更新Redis缓存再更新数据库和先更新数据库再更新Redis缓存两种方案,文章指出,删除R... 目录一、Redis 数据库数据一致性的解决方案1.1、更新Redis缓存、删除Redis缓存的区别二

Redis事务与数据持久化方式

《Redis事务与数据持久化方式》该文档主要介绍了Redis事务和持久化机制,事务通过将多个命令打包执行,而持久化则通过快照(RDB)和追加式文件(AOF)两种方式将内存数据保存到磁盘,以防止数据丢失... 目录一、Redis 事务1.1 事务本质1.2 数据库事务与redis事务1.2.1 数据库事务1.

Oracle Expdp按条件导出指定表数据的方法实例

《OracleExpdp按条件导出指定表数据的方法实例》:本文主要介绍Oracle的expdp数据泵方式导出特定机构和时间范围的数据,并通过parfile文件进行条件限制和配置,文中通过代码介绍... 目录1.场景描述 2.方案分析3.实验验证 3.1 parfile文件3.2 expdp命令导出4.总结

更改docker默认数据目录的方法步骤

《更改docker默认数据目录的方法步骤》本文主要介绍了更改docker默认数据目录的方法步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1.查看docker是否存在并停止该服务2.挂载镜像并安装rsync便于备份3.取消挂载备份和迁

不删数据还能合并磁盘? 让电脑C盘D盘合并并保留数据的技巧

《不删数据还能合并磁盘?让电脑C盘D盘合并并保留数据的技巧》在Windows操作系统中,合并C盘和D盘是一个相对复杂的任务,尤其是当你不希望删除其中的数据时,幸运的是,有几种方法可以实现这一目标且在... 在电脑生产时,制造商常为C盘分配较小的磁盘空间,以确保软件在运行过程中不会出现磁盘空间不足的问题。但在

Java如何接收并解析HL7协议数据

《Java如何接收并解析HL7协议数据》文章主要介绍了HL7协议及其在医疗行业中的应用,详细描述了如何配置环境、接收和解析数据,以及与前端进行交互的实现方法,文章还分享了使用7Edit工具进行调试的经... 目录一、前言二、正文1、环境配置2、数据接收:HL7Monitor3、数据解析:HL7Busines

正则表达式高级应用与性能优化记录

《正则表达式高级应用与性能优化记录》本文介绍了正则表达式的高级应用和性能优化技巧,包括文本拆分、合并、XML/HTML解析、数据分析、以及性能优化方法,通过这些技巧,可以更高效地利用正则表达式进行复杂... 目录第6章:正则表达式的高级应用6.1 模式匹配与文本处理6.1.1 文本拆分6.1.2 文本合并6

Mybatis拦截器如何实现数据权限过滤

《Mybatis拦截器如何实现数据权限过滤》本文介绍了MyBatis拦截器的使用,通过实现Interceptor接口对SQL进行处理,实现数据权限过滤功能,通过在本地线程变量中存储数据权限相关信息,并... 目录背景基础知识MyBATis 拦截器介绍代码实战总结背景现在的项目负责人去年年底离职,导致前期规

Redis KEYS查询大批量数据替代方案

《RedisKEYS查询大批量数据替代方案》在使用Redis时,KEYS命令虽然简单直接,但其全表扫描的特性在处理大规模数据时会导致性能问题,甚至可能阻塞Redis服务,本文将介绍SCAN命令、有序... 目录前言KEYS命令问题背景替代方案1.使用 SCAN 命令2. 使用有序集合(Sorted Set)

SpringBoot整合Canal+RabbitMQ监听数据变更详解

《SpringBoot整合Canal+RabbitMQ监听数据变更详解》在现代分布式系统中,实时获取数据库的变更信息是一个常见的需求,本文将介绍SpringBoot如何通过整合Canal和Rabbit... 目录需求步骤环境搭建整合SpringBoot与Canal实现客户端Canal整合RabbitMQSp