代码随想录训练营 Day41打卡 动态规划 part08 121. 买卖股票的最佳时机 122. 买卖股票的最佳时机II 123. 买卖股票的最佳时机III

本文主要是介绍代码随想录训练营 Day41打卡 动态规划 part08 121. 买卖股票的最佳时机 122. 买卖股票的最佳时机II 123. 买卖股票的最佳时机III,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

代码随想录训练营 Day41打卡 动态规划 part08

一、力扣121. 买卖股票的最佳时机

给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。
你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。
返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0 。
示例
输入:[7,1,5,3,6,4]
输出:5
解释:在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。
注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格;同时,你不能在买入前卖出股票。

在这个问题中,我们需要计算在给定的股票价格数组 prices 中,最多只能进行一次交易(即一次买入和一次卖出)的情况下,能够获得的最大利润。为了实现这一点,我们使用动态规划的方法来模拟整个买卖过程。

我们定义两个状态:

  • dp[i][0] 表示第 i 天持有股票时能够获得的最大现金金额。
  • dp[i][1] 表示第 i 天不持有股票时能够获得的最大现金金额。

注意,“持有股票”不一定表示当天买入股票,也可能是之前买入的,并且持续持有到当天。同样地,“不持有股票”可以是当天卖出股票,或者之前已经卖出并且保持不持有状态。

持有股票时 (dp[i][0]):

如果第 i-1 天已经持有股票,那么保持现状:dp[i - 1][0]。
如果第 i 天买入股票,那么所得现金为 -prices[i]。
公式:dp[i][0] = max(dp[i - 1][0], -prices[i])

不持有股票时 (dp[i][1]):

如果第 i-1 天已经不持有股票,那么保持现状:dp[i - 1][1]。
如果第 i 天卖出股票,那么所得现金为 prices[i] + dp[i - 1][0]。
公式:dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0])
以示例输入:[7,1,5,3,6,4]为例,dp数组状态如下:
在这里插入图片描述
dp[5][1]就是最终结果。

为什么不是dp[5][0]呢?

因为本题中不持有股票状态所得金钱一定比持有股票状态得到的多!

代码实现

class Solution:def maxProfit(self, prices: List[int]) -> int:length = len(prices)if length == 0:return 0# 初始化 dp 数组,大小为 [length][2]# dp[i][0] 表示第 i 天持有股票时的最大现金# dp[i][1] 表示第 i 天不持有股票时的最大现金dp = [[0] * 2 for _ in range(length)]# 初始化第一天的状态dp[0][0] = -prices[0]  # 第 0 天买入股票dp[0][1] = 0  # 第 0 天不持有股票# 动态规划,计算每一天的状态for i in range(1, length):# 第 i 天持有股票的最大现金dp[i][0] = max(dp[i - 1][0], -prices[i])# 第 i 天不持有股票的最大现金dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0])# 最终结果是最后一天不持有股票时的最大现金return dp[-1][1]

力扣题目链接
题目文章讲解
题目视频讲解

二、力扣122. 买卖股票的最佳时机II

给你一个整数数组 prices ,其中 prices[i] 表示某支股票第 i 天的价格。
在每一天,你可以决定是否购买和/或出售股票。你在任何时候 最多 只能持有 一股 股票。你也可以先购买,然后在 同一天 出售。
返回 你能获得的 最大 利润 。
示例
输入:prices = [7,1,5,3,6,4]
输出:7
解释:在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5 - 1 = 4。
随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6 - 3 = 3。
最大总利润为 4 + 3 = 7 。

在这个问题中,我们需要找到一个策略,使得通过多次交易(买入和卖出股票)能够获得的最大利润。与之前只能进行一次交易的情况不同,这里允许在多个不同的时间点进行多次交易,每次交易只能持有一股股票。

我们仍然使用动态规划来解决这个问题。我们定义两个状态:

dp[i][0] 表示第 i 天持有股票时能够获得的最大现金金额。
dp[i][1] 表示第 i 天不持有股票时能够获得的最大现金金额。

与只能进行一次交易不同,这里第 i 天买入股票的现金金额可以是前一天不持有股票时的现金减去今天的股票价格,即 dp[i-1][1] - prices[i]。

持有股票时 (dp[i][0]):

如果第 i-1 天已经持有股票,那么保持现状:dp[i-1][0]。
如果第 i 天买入股票,那么所得现金为前一天不持有股票的现金减去今天的股票价格:dp[i-1][1] - prices[i]。
公式:dp[i][0] = max(dp[i-1][0], dp[i-1][1] - prices[i])

不持有股票时 (dp[i][1]):

如果第 i-1 天已经不持有股票,那么保持现状:dp[i-1][1]。
如果第 i 天卖出股票,那么所得现金为今天的股票价格加上前一天持有股票的现金:dp[i-1][0] + prices[i]。
公式:dp[i][1] = max(dp[i-1][1], dp[i-1][0] + prices[i])

代码实现

class Solution:def maxProfit(self, prices: List[int]) -> int:length = len(prices)# 特殊情况处理if length == 0:return 0# 初始化 dp 数组,大小为 [length][2]# dp[i][0] 表示第 i 天持有股票时的最大现金# dp[i][1] 表示第 i 天不持有股票时的最大现金dp = [[0] * 2 for _ in range(length)]# 初始化第一天的状态dp[0][0] = -prices[0]  # 第 0 天买入股票dp[0][1] = 0  # 第 0 天不持有股票# 动态规划,计算每一天的状态for i in range(1, length):# 第 i 天持有股票的最大现金dp[i][0] = max(dp[i-1][0], dp[i-1][1] - prices[i])# 第 i 天不持有股票的最大现金dp[i][1] = max(dp[i-1][1], dp[i-1][0] + prices[i])# 最终结果是最后一天不持有股票时的最大现金return dp[-1][1]

力扣题目链接
题目文章讲解
题目视频讲解

二、力扣123. 买卖股票的最佳时机III

给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例
输入:prices = [3,3,5,0,0,3,1,4]
输出:6
解释:在第 4 天(股票价格 = 0)的时候买入,在第 6 天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3-0 = 3 。
随后,在第 7 天(股票价格 = 1)的时候买入,在第 8 天 (股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4-1 = 3 。

在这个问题中,我们需要找到一个策略,通过最多两次交易(即最多买入两次和卖出两次)来获得最大利润。每次交易只能持有一股股票,因此有五种状态:

dp[i][0]:表示第 i 天没有任何操作或不进行任何交易时的最大利润。
dp[i][1]:表示第 i 天进行了第一次买入操作后的最大利润。
dp[i][2]:表示第 i 天进行了第一次卖出操作后的最大利润。
dp[i][3]:表示第 i 天进行了第二次买入操作后的最大利润。
dp[i][4]:表示第 i 天进行了第二次卖出操作后的最大利润。

dp[i][1]: 第 i 天持有股票(第一次买入)的最大利润:
如果第 i 天买入股票:dp[i-1][0] - prices[i]。
如果第 i 天不买入股票:dp[i-1][1]。
公式:dp[i][1] = max(dp[i-1][1], dp[i-1][0] - prices[i])

dp[i][2]: 第 i 天不持有股票(第一次卖出)的最大利润:
如果第 i 天卖出股票:dp[i-1][1] + prices[i]。
如果第 i 天不卖出股票:dp[i-1][2]。
公式:dp[i][2] = max(dp[i-1][2], dp[i-1][1] + prices[i])

dp[i][3]: 第 i 天持有股票(第二次买入)的最大利润:
如果第 i 天买入股票:dp[i-1][2] - prices[i]。
如果第 i 天不买入股票:dp[i-1][3]。
公式:dp[i][3] = max(dp[i-1][3], dp[i-1][2] - prices[i])

dp[i][4]: 第 i 天不持有股票(第二次卖出)的最大利润:
如果第 i 天卖出股票:dp[i-1][3] + prices[i]。
如果第 i 天不卖出股票:dp[i-1][4]。
公式:dp[i][4] = max(dp[i-1][4], dp[i-1][3] + prices[i])

dp数组初始化

dp[0][0] = 0:表示第 0 天不进行任何操作,利润为 0。
dp[0][1] = -prices[0]:表示第 0 天第一次买入股票后的利润,即减去第 0 天的股票价格。
dp[0][2] = 0:表示第 0 天第一次卖出股票后的利润,因为不能卖出不存在的股票,所以利润为 0。
dp[0][3] = -prices[0]:表示第 0 天第二次买入股票后的利润,即再减去第 0 天的股票价格。
dp[0][4] = 0:表示第 0 天第二次卖出股票后的利润,同理也为 0。

代码实现

class Solution:def maxProfit(self, prices: List[int]) -> int:# 特殊情况处理,如果没有股票价格数据,返回 0if len(prices) == 0:return 0# 初始化 dp 数组,大小为 [len(prices)][5]dp = [[0] * 5 for _ in range(len(prices))]# 第 0 天的状态初始化dp[0][0] = 0  # 不操作dp[0][1] = -prices[0]  # 第一次买入dp[0][2] = 0  # 第一次卖出dp[0][3] = -prices[0]  # 第二次买入dp[0][4] = 0  # 第二次卖出# 动态规划,遍历每一天的状态for i in range(1, len(prices)):# 第 i 天不操作的状态,延续前一天的状态dp[i][0] = dp[i-1][0]# 第 i 天第一次买入股票的状态dp[i][1] = max(dp[i-1][1], dp[i-1][0] - prices[i])# 第 i 天第一次卖出股票的状态dp[i][2] = max(dp[i-1][2], dp[i-1][1] + prices[i])# 第 i 天第二次买入股票的状态dp[i][3] = max(dp[i-1][3], dp[i-1][2] - prices[i])# 第 i 天第二次卖出股票的状态dp[i][4] = max(dp[i-1][4], dp[i-1][3] + prices[i])# 最终返回的结果是最后一天,第二次卖出股票后的最大利润return dp[-1][4]

力扣题目链接
题目文章讲解
题目视频讲解

这篇关于代码随想录训练营 Day41打卡 动态规划 part08 121. 买卖股票的最佳时机 122. 买卖股票的最佳时机II 123. 买卖股票的最佳时机III的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1114864

相关文章

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码

《在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码》在MyBatis的XML映射文件中,trim元素用于动态添加SQL语句的一部分,处理前缀、后缀及多余的逗号或连接符,示... 在MyBATis的XML映射文件中,<trim>元素用于动态地添加SQL语句的一部分,例如SET或W

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

VUE动态绑定class类的三种常用方式及适用场景详解

《VUE动态绑定class类的三种常用方式及适用场景详解》文章介绍了在实际开发中动态绑定class的三种常见情况及其解决方案,包括根据不同的返回值渲染不同的class样式、给模块添加基础样式以及根据设... 目录前言1.动态选择class样式(对象添加:情景一)2.动态添加一个class样式(字符串添加:情

python多进程实现数据共享的示例代码

《python多进程实现数据共享的示例代码》本文介绍了Python中多进程实现数据共享的方法,包括使用multiprocessing模块和manager模块这两种方法,具有一定的参考价值,感兴趣的可以... 目录背景进程、进程创建进程间通信 进程间共享数据共享list实践背景 安卓ui自动化框架,使用的是

SpringBoot生成和操作PDF的代码详解

《SpringBoot生成和操作PDF的代码详解》本文主要介绍了在SpringBoot项目下,通过代码和操作步骤,详细的介绍了如何操作PDF,希望可以帮助到准备通过JAVA操作PDF的你,项目框架用的... 目录本文简介PDF文件简介代码实现PDF操作基于PDF模板生成,并下载完全基于代码生成,并保存合并P

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R

SpringBoot基于MyBatis-Plus实现Lambda Query查询的示例代码

《SpringBoot基于MyBatis-Plus实现LambdaQuery查询的示例代码》MyBatis-Plus是MyBatis的增强工具,简化了数据库操作,并提高了开发效率,它提供了多种查询方... 目录引言基础环境配置依赖配置(Maven)application.yml 配置表结构设计demo_st

SpringCloud集成AlloyDB的示例代码

《SpringCloud集成AlloyDB的示例代码》AlloyDB是GoogleCloud提供的一种高度可扩展、强性能的关系型数据库服务,它兼容PostgreSQL,并提供了更快的查询性能... 目录1.AlloyDBjavascript是什么?AlloyDB 的工作原理2.搭建测试环境3.代码工程1.

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python