代码随想录训练营 Day41打卡 动态规划 part08 121. 买卖股票的最佳时机 122. 买卖股票的最佳时机II 123. 买卖股票的最佳时机III

本文主要是介绍代码随想录训练营 Day41打卡 动态规划 part08 121. 买卖股票的最佳时机 122. 买卖股票的最佳时机II 123. 买卖股票的最佳时机III,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

代码随想录训练营 Day41打卡 动态规划 part08

一、力扣121. 买卖股票的最佳时机

给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。
你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。
返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0 。
示例
输入:[7,1,5,3,6,4]
输出:5
解释:在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。
注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格;同时,你不能在买入前卖出股票。

在这个问题中,我们需要计算在给定的股票价格数组 prices 中,最多只能进行一次交易(即一次买入和一次卖出)的情况下,能够获得的最大利润。为了实现这一点,我们使用动态规划的方法来模拟整个买卖过程。

我们定义两个状态:

  • dp[i][0] 表示第 i 天持有股票时能够获得的最大现金金额。
  • dp[i][1] 表示第 i 天不持有股票时能够获得的最大现金金额。

注意,“持有股票”不一定表示当天买入股票,也可能是之前买入的,并且持续持有到当天。同样地,“不持有股票”可以是当天卖出股票,或者之前已经卖出并且保持不持有状态。

持有股票时 (dp[i][0]):

如果第 i-1 天已经持有股票,那么保持现状:dp[i - 1][0]。
如果第 i 天买入股票,那么所得现金为 -prices[i]。
公式:dp[i][0] = max(dp[i - 1][0], -prices[i])

不持有股票时 (dp[i][1]):

如果第 i-1 天已经不持有股票,那么保持现状:dp[i - 1][1]。
如果第 i 天卖出股票,那么所得现金为 prices[i] + dp[i - 1][0]。
公式:dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0])
以示例输入:[7,1,5,3,6,4]为例,dp数组状态如下:
在这里插入图片描述
dp[5][1]就是最终结果。

为什么不是dp[5][0]呢?

因为本题中不持有股票状态所得金钱一定比持有股票状态得到的多!

代码实现

class Solution:def maxProfit(self, prices: List[int]) -> int:length = len(prices)if length == 0:return 0# 初始化 dp 数组,大小为 [length][2]# dp[i][0] 表示第 i 天持有股票时的最大现金# dp[i][1] 表示第 i 天不持有股票时的最大现金dp = [[0] * 2 for _ in range(length)]# 初始化第一天的状态dp[0][0] = -prices[0]  # 第 0 天买入股票dp[0][1] = 0  # 第 0 天不持有股票# 动态规划,计算每一天的状态for i in range(1, length):# 第 i 天持有股票的最大现金dp[i][0] = max(dp[i - 1][0], -prices[i])# 第 i 天不持有股票的最大现金dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0])# 最终结果是最后一天不持有股票时的最大现金return dp[-1][1]

力扣题目链接
题目文章讲解
题目视频讲解

二、力扣122. 买卖股票的最佳时机II

给你一个整数数组 prices ,其中 prices[i] 表示某支股票第 i 天的价格。
在每一天,你可以决定是否购买和/或出售股票。你在任何时候 最多 只能持有 一股 股票。你也可以先购买,然后在 同一天 出售。
返回 你能获得的 最大 利润 。
示例
输入:prices = [7,1,5,3,6,4]
输出:7
解释:在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5 - 1 = 4。
随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6 - 3 = 3。
最大总利润为 4 + 3 = 7 。

在这个问题中,我们需要找到一个策略,使得通过多次交易(买入和卖出股票)能够获得的最大利润。与之前只能进行一次交易的情况不同,这里允许在多个不同的时间点进行多次交易,每次交易只能持有一股股票。

我们仍然使用动态规划来解决这个问题。我们定义两个状态:

dp[i][0] 表示第 i 天持有股票时能够获得的最大现金金额。
dp[i][1] 表示第 i 天不持有股票时能够获得的最大现金金额。

与只能进行一次交易不同,这里第 i 天买入股票的现金金额可以是前一天不持有股票时的现金减去今天的股票价格,即 dp[i-1][1] - prices[i]。

持有股票时 (dp[i][0]):

如果第 i-1 天已经持有股票,那么保持现状:dp[i-1][0]。
如果第 i 天买入股票,那么所得现金为前一天不持有股票的现金减去今天的股票价格:dp[i-1][1] - prices[i]。
公式:dp[i][0] = max(dp[i-1][0], dp[i-1][1] - prices[i])

不持有股票时 (dp[i][1]):

如果第 i-1 天已经不持有股票,那么保持现状:dp[i-1][1]。
如果第 i 天卖出股票,那么所得现金为今天的股票价格加上前一天持有股票的现金:dp[i-1][0] + prices[i]。
公式:dp[i][1] = max(dp[i-1][1], dp[i-1][0] + prices[i])

代码实现

class Solution:def maxProfit(self, prices: List[int]) -> int:length = len(prices)# 特殊情况处理if length == 0:return 0# 初始化 dp 数组,大小为 [length][2]# dp[i][0] 表示第 i 天持有股票时的最大现金# dp[i][1] 表示第 i 天不持有股票时的最大现金dp = [[0] * 2 for _ in range(length)]# 初始化第一天的状态dp[0][0] = -prices[0]  # 第 0 天买入股票dp[0][1] = 0  # 第 0 天不持有股票# 动态规划,计算每一天的状态for i in range(1, length):# 第 i 天持有股票的最大现金dp[i][0] = max(dp[i-1][0], dp[i-1][1] - prices[i])# 第 i 天不持有股票的最大现金dp[i][1] = max(dp[i-1][1], dp[i-1][0] + prices[i])# 最终结果是最后一天不持有股票时的最大现金return dp[-1][1]

力扣题目链接
题目文章讲解
题目视频讲解

二、力扣123. 买卖股票的最佳时机III

给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例
输入:prices = [3,3,5,0,0,3,1,4]
输出:6
解释:在第 4 天(股票价格 = 0)的时候买入,在第 6 天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3-0 = 3 。
随后,在第 7 天(股票价格 = 1)的时候买入,在第 8 天 (股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4-1 = 3 。

在这个问题中,我们需要找到一个策略,通过最多两次交易(即最多买入两次和卖出两次)来获得最大利润。每次交易只能持有一股股票,因此有五种状态:

dp[i][0]:表示第 i 天没有任何操作或不进行任何交易时的最大利润。
dp[i][1]:表示第 i 天进行了第一次买入操作后的最大利润。
dp[i][2]:表示第 i 天进行了第一次卖出操作后的最大利润。
dp[i][3]:表示第 i 天进行了第二次买入操作后的最大利润。
dp[i][4]:表示第 i 天进行了第二次卖出操作后的最大利润。

dp[i][1]: 第 i 天持有股票(第一次买入)的最大利润:
如果第 i 天买入股票:dp[i-1][0] - prices[i]。
如果第 i 天不买入股票:dp[i-1][1]。
公式:dp[i][1] = max(dp[i-1][1], dp[i-1][0] - prices[i])

dp[i][2]: 第 i 天不持有股票(第一次卖出)的最大利润:
如果第 i 天卖出股票:dp[i-1][1] + prices[i]。
如果第 i 天不卖出股票:dp[i-1][2]。
公式:dp[i][2] = max(dp[i-1][2], dp[i-1][1] + prices[i])

dp[i][3]: 第 i 天持有股票(第二次买入)的最大利润:
如果第 i 天买入股票:dp[i-1][2] - prices[i]。
如果第 i 天不买入股票:dp[i-1][3]。
公式:dp[i][3] = max(dp[i-1][3], dp[i-1][2] - prices[i])

dp[i][4]: 第 i 天不持有股票(第二次卖出)的最大利润:
如果第 i 天卖出股票:dp[i-1][3] + prices[i]。
如果第 i 天不卖出股票:dp[i-1][4]。
公式:dp[i][4] = max(dp[i-1][4], dp[i-1][3] + prices[i])

dp数组初始化

dp[0][0] = 0:表示第 0 天不进行任何操作,利润为 0。
dp[0][1] = -prices[0]:表示第 0 天第一次买入股票后的利润,即减去第 0 天的股票价格。
dp[0][2] = 0:表示第 0 天第一次卖出股票后的利润,因为不能卖出不存在的股票,所以利润为 0。
dp[0][3] = -prices[0]:表示第 0 天第二次买入股票后的利润,即再减去第 0 天的股票价格。
dp[0][4] = 0:表示第 0 天第二次卖出股票后的利润,同理也为 0。

代码实现

class Solution:def maxProfit(self, prices: List[int]) -> int:# 特殊情况处理,如果没有股票价格数据,返回 0if len(prices) == 0:return 0# 初始化 dp 数组,大小为 [len(prices)][5]dp = [[0] * 5 for _ in range(len(prices))]# 第 0 天的状态初始化dp[0][0] = 0  # 不操作dp[0][1] = -prices[0]  # 第一次买入dp[0][2] = 0  # 第一次卖出dp[0][3] = -prices[0]  # 第二次买入dp[0][4] = 0  # 第二次卖出# 动态规划,遍历每一天的状态for i in range(1, len(prices)):# 第 i 天不操作的状态,延续前一天的状态dp[i][0] = dp[i-1][0]# 第 i 天第一次买入股票的状态dp[i][1] = max(dp[i-1][1], dp[i-1][0] - prices[i])# 第 i 天第一次卖出股票的状态dp[i][2] = max(dp[i-1][2], dp[i-1][1] + prices[i])# 第 i 天第二次买入股票的状态dp[i][3] = max(dp[i-1][3], dp[i-1][2] - prices[i])# 第 i 天第二次卖出股票的状态dp[i][4] = max(dp[i-1][4], dp[i-1][3] + prices[i])# 最终返回的结果是最后一天,第二次卖出股票后的最大利润return dp[-1][4]

力扣题目链接
题目文章讲解
题目视频讲解

这篇关于代码随想录训练营 Day41打卡 动态规划 part08 121. 买卖股票的最佳时机 122. 买卖股票的最佳时机II 123. 买卖股票的最佳时机III的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1114864

相关文章

使用Java将DOCX文档解析为Markdown文档的代码实现

《使用Java将DOCX文档解析为Markdown文档的代码实现》在现代文档处理中,Markdown(MD)因其简洁的语法和良好的可读性,逐渐成为开发者、技术写作者和内容创作者的首选格式,然而,许多文... 目录引言1. 工具和库介绍2. 安装依赖库3. 使用Apache POI解析DOCX文档4. 将解析

C++使用printf语句实现进制转换的示例代码

《C++使用printf语句实现进制转换的示例代码》在C语言中,printf函数可以直接实现部分进制转换功能,通过格式说明符(formatspecifier)快速输出不同进制的数值,下面给大家分享C+... 目录一、printf 原生支持的进制转换1. 十进制、八进制、十六进制转换2. 显示进制前缀3. 指

使用Python实现全能手机虚拟键盘的示例代码

《使用Python实现全能手机虚拟键盘的示例代码》在数字化办公时代,你是否遇到过这样的场景:会议室投影电脑突然键盘失灵、躺在沙发上想远程控制书房电脑、或者需要给长辈远程协助操作?今天我要分享的Pyth... 目录一、项目概述:不止于键盘的远程控制方案1.1 创新价值1.2 技术栈全景二、需求实现步骤一、需求

Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码

《Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码》:本文主要介绍Java中日期时间转换的多种方法,包括将Date转换为LocalD... 目录一、Date转LocalDateTime二、Date转LocalDate三、LocalDateTim

MySQL中动态生成SQL语句去掉所有字段的空格的操作方法

《MySQL中动态生成SQL语句去掉所有字段的空格的操作方法》在数据库管理过程中,我们常常会遇到需要对表中字段进行清洗和整理的情况,本文将详细介绍如何在MySQL中动态生成SQL语句来去掉所有字段的空... 目录在mysql中动态生成SQL语句去掉所有字段的空格准备工作原理分析动态生成SQL语句在MySQL

jupyter代码块没有运行图标的解决方案

《jupyter代码块没有运行图标的解决方案》:本文主要介绍jupyter代码块没有运行图标的解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录jupyter代码块没有运行图标的解决1.找到Jupyter notebook的系统配置文件2.这时候一般会搜索到

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

Java调用C++动态库超详细步骤讲解(附源码)

《Java调用C++动态库超详细步骤讲解(附源码)》C语言因其高效和接近硬件的特性,时常会被用在性能要求较高或者需要直接操作硬件的场合,:本文主要介绍Java调用C++动态库的相关资料,文中通过代... 目录一、直接调用C++库第一步:动态库生成(vs2017+qt5.12.10)第二步:Java调用C++

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当