hadoop2提交到Yarn: Mapreduce执行过程reduce分析3

2024-08-27 11:58

本文主要是介绍hadoop2提交到Yarn: Mapreduce执行过程reduce分析3,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原文

问题导读:
1.Reduce类主要有哪三个步骤?
2.Reduce的Copy都包含什么过程?
3.Sort主要做了哪些工作?






4.4 Reduce类4.4.1 Reduce介绍

整完了Map,接下来就是Reduce了。YarnChild.main()—>ReduceTask.run()。ReduceTask.run方法开始和MapTask类似,包括initialize()初始化,根据情况看是否调用runJobCleanupTask(),runTaskCleanupTask()等。之后进入正式的工作,主要有这么三个步骤:Copy、Sort、Reduce。
4.4.2 Copy
Copy就是从执行各个Map任务的节点获取map的输出文件。这是由ReduceTask.ReduceCopier 类来负责。ReduceCopier对象负责将Map函数的输出拷贝至Reduce所在机器。如果大小超过一定阈值就写到磁盘,否则放入内存,在远程拷贝数据的同时,Reduce Task启动了两个后台线程对内存和磁盘上的文件进行合并,防止内存使用过多和磁盘文件过多。
Step1:
    首先在ReduceTask的run方法中,通过如下配置来mapreduce.job.reduce.shuffle.consumer.plugin.class装配shuffle的plugin。默认的实现是Shuffle类:
  1.      Class<? extends ShuffleConsumerPlugin> clazz = job.getClass(MRConfig.SHUFFLE_CONSUMER_PLUGIN, Shuffle.class, ShuffleConsumerPlugin.class); 
  2.      shuffleConsumerPlugin = ReflectionUtils.newInstance(clazz, job);
  3.      LOG.info("Using ShuffleConsumerPlugin: " + shuffleConsumerPlugin);
复制代码

Step2:
    初始化上述的plugin后,执行其run方法,得到RawKeyValueIterator的实例。
run方法的执行步骤如下:
Step2.1:
    量化Reduce的事件数目:
  1. int eventsPerReducer = Math.max(MIN_EVENTS_TO_FETCH, MAX_RPC_OUTSTANDING_EVENTS / jobConf.getNumReduceTasks());
  2.      int maxEventsToFetch = Math.min(MAX_EVENTS_TO_FETCH, eventsPerReducer);
复制代码
Step2.2:
生成map的完成状态获取线程,并启动此线程:
  1. final EventFetcher<K,V> eventFetcher = new EventFetcher<K,V>(reduceId, umbilical, scheduler, this, maxEventsToFetch);

  2.   eventFetcher.start();
复制代码

获取已经完成的Map信息,如Map的host、mapId等放入ShuffleSchedulerImpl中的Set<MapHost>中便于下面进行数据的拷贝传输。
  1.   URI u = getBaseURI(reduceId, event.getTaskTrackerHttp()); 
  2.        addKnownMapOutput(u.getHost() + ":" + u.getPort(), 
  3.            u.toString(), 
  4.            event.getTaskAttemptId()); 
  5.        maxMapRuntime = Math.max(maxMapRuntime, event.getTaskRunTime());
复制代码

Step2.3:
    在Shuffle类中启动初始化Fetcher线程组,并启动:
  1. boolean isLocal = localMapFiles != null;

  2.     final int numFetchers = isLocal ? 1 :

  3.       jobConf.getInt(MRJobConfig.SHUFFLE_PARALLEL_COPIES, 5);

  4.     Fetcher<K,V>[] fetchers = new Fetcher[numFetchers];

  5.     if (isLocal) {

  6.       fetchers[0] = new LocalFetcher<K, V>(jobConf, reduceId, scheduler,

  7.           merger, reporter, metrics, this, reduceTask.getShuffleSecret(),

  8.           localMapFiles);

  9.       fetchers[0].start();

  10.     } else {

  11.       for (int i=0; i < numFetchers; ++i) {

  12.         fetchers[i] = new Fetcher<K,V>(jobConf, reduceId, scheduler, merger,

  13.                                        reporter, metrics, this,

  14.                                        reduceTask.getShuffleSecret());

  15.         fetchers[i].start();

  16.       }

  17.     }
复制代码

线程的run方法就是进行数据的远程拷贝:
  1. try { 
  2.           // If merge is on, block 
  3.           merger.waitForResource(); 

  4.           // Get a host to shuffle from
  5.           host = scheduler.getHost(); 
  6.           metrics.threadBusy(); 
  7.           // Shuffle 
  8.           copyFromHost(host); 
  9.         } finally { 
  10.           if (host != null) { 
  11.             scheduler.freeHost(host); 
  12.             metrics.threadFree();  
  13.           } 
  14.         }
复制代码

Step2.4:
来看下这个copyFromHost方法。主要是就是使用HttpURLConnection,实现远程数据的传输。
建立连接之后,从接收到的Stream流中读取数据。每次读取一个map文件。
  1. TaskAttemptID[] failedTasks = null;

  2.       while (!remaining.isEmpty() && failedTasks == null) {

  3.         failedTasks = copyMapOutput(host, input, remaining);

  4.       }
复制代码
上面的copyMapOutput方法中,每次读取一个mapid,根据MergeManagerImpl中的reserve函数,检查map的输出是否超过了mapreduce.reduce.memory.totalbytes配置的大小,此配置的默认值
是当前Runtime的maxMemory*mapreduce.reduce.shuffle.input.buffer.percent配置的值,Buffer.percent的默认值为0.90。
如果mapoutput超过了此配置的大小时,生成一个OnDiskMapOutput实例。在接下来的操作中,map的输出写入到local临时文件中。
如果没有超过此大小,生成一个InMemoryMapOutput实例。在接下来操作中,直接把map输出写入到内存。
最后,执行ShuffleScheduler.copySucceeded完成文件的copy,调用mapout.commit函数,更新状态或者触发merge操作。
Step2.5:
    等待上面所有的拷贝完成之后,关闭相关的线程。
  1. eventFetcher.shutDown();   

  2.     // Stop the map-output fetcher threads
  3.     for (Fetcher<K,V> fetcher : fetchers) {
  4.       fetcher.shutDown();
  5.     }   

  6.     // stop the scheduler
  7.     scheduler.close(); 

  8.     copyPhase.complete(); // copy is already complete
  9.     taskStatus.setPhase(TaskStatus.Phase.SORT);
  10.     reduceTask.statusUpdate(umbilical);
复制代码

Step2.6:
执行最终的merge操作,由Shuffle中的MergeManager完成:
  1. public RawKeyValueIterator close() throws Throwable {

  2.     // Wait for on-going merges to complete

  3.     if (memToMemMerger != null) {

  4.       memToMemMerger.close();

  5.     }

  6.     inMemoryMerger.close();

  7.     onDiskMerger.close();

  8.    

  9.     List<InMemoryMapOutput<K, V>> memory =

  10.       new ArrayList<InMemoryMapOutput<K, V>>(inMemoryMergedMapOutputs);

  11.     inMemoryMergedMapOutputs.clear();

  12.     memory.addAll(inMemoryMapOutputs);

  13.     inMemoryMapOutputs.clear();

  14.     List<CompressAwarePath> disk = new ArrayList<CompressAwarePath>(onDiskMapOutputs);

  15.     onDiskMapOutputs.clear();

  16.     return finalMerge(jobConf, rfs, memory, disk);

  17.   }
复制代码

Step3:
释放资源。
  1. mapOutputFilesOnDisk.clear();
复制代码

  Copy完毕。
4.4.3 Sort
    Sort(其实相当于合并)就相当于排序工作的一个延续,它会在所有的文件都拷贝完毕后进行。使用工具类Merger归并所有的文件。经过此过程后,会产生一个合并了所有(所有并不准确)Map任务输出文件的新文件,而那些从其他各个服务器搞过来的 Map任务输出文件会删除。根据hadoop是否分布式来决定调用哪种排序方式。
    在上面的4.3.2节中的Step2.4结束之后就会触发此操作。
4.4.4 Reduce
    经过上面的步骤之后,回到ReduceTask中的run方法继续往下执行,调用runNewReducer。创建reducer:
  1. org.apache.hadoop.mapreduce.Reducer<INKEY,INVALUE,OUTKEY,OUTVALUE> reducer =
  2.      (org.apache.hadoop.mapreduce.Reducer<INKEY,INVALUE,OUTKEY,OUTVALUE>)
  3.         ReflectionUtils.newInstance(taskContext.getReducerClass(), job);
复制代码

并执行其run方法,此run方法就是我们的org.apache.hadoop.mapreduce.Reducer中的run方法。
  1. public void run(Context context) throws IOException, InterruptedException {

  2.     setup(context);

  3.     try {

  4.       while (context.nextKey()) {

  5.         reduce(context.getCurrentKey(), context.getValues(), context);

  6.         // If a back up store is used, reset it

  7.         Iterator<VALUEIN> iter = context.getValues().iterator();

  8.         if(iter instanceof ReduceContext.ValueIterator) {

  9.           ((ReduceContext.ValueIterator<VALUEIN>)iter).resetBackupStore();       

  10.         }

  11.       }

  12.     } finally {

  13.       cleanup(context);

  14.     }

  15.   }

  16. }
复制代码

while的循环条件是ReduceContext.nextKey()为真,这个方法就在ReduceContext中实现的,这个方法的目的就是处理下一个唯一的key,因为reduce方法的输入数据是分组的,所以每次都会处理一个key及这个key对应的所有value,又因为已经将所有的Map Task的输出拷贝过来而且做了排序,所以key相同的KV对都是挨着的。
    nextKey方法中,又会调用nextKeyValue方法来尝试去获取下一个key值,并且如果没数据了就会返回false,如果还有数据就返回true。防止获取重复的数据就在这里做的处理。
接下来就是调用用户自定义的reduce方法了。
  1. public void reduce(Text key, Iterable<IntWritable> values,

  2.                        Context context

  3.                        ) throws IOException, InterruptedException {

  4.       int sum = 0;

  5.       for (IntWritable val : values) {

  6.         sum += val.get();

  7.       }

  8.       result.set(sum);

  9.       context.write(key, result);

  10.     }
复制代码


这篇关于hadoop2提交到Yarn: Mapreduce执行过程reduce分析3的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1111602

相关文章

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

redis群集简单部署过程

《redis群集简单部署过程》文章介绍了Redis,一个高性能的键值存储系统,其支持多种数据结构和命令,它还讨论了Redis的服务器端架构、数据存储和获取、协议和命令、高可用性方案、缓存机制以及监控和... 目录Redis介绍1. 基本概念2. 服务器端3. 存储和获取数据4. 协议和命令5. 高可用性6.

在MySQL执行UPDATE语句时遇到的错误1175的解决方案

《在MySQL执行UPDATE语句时遇到的错误1175的解决方案》MySQL安全更新模式(SafeUpdateMode)限制了UPDATE和DELETE操作,要求使用WHERE子句时必须基于主键或索引... mysql 中遇到的 Error Code: 1175 是由于启用了 安全更新模式(Safe Upd

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

PLsql Oracle 下载安装图文过程详解

《PLsqlOracle下载安装图文过程详解》PL/SQLDeveloper是一款用于开发Oracle数据库的集成开发环境,可以通过官网下载安装配置,并通过配置tnsnames.ora文件及环境变... 目录一、PL/SQL Developer 简介二、PL/SQL Developer 安装及配置详解1.下

在Java中使用ModelMapper简化Shapefile属性转JavaBean实战过程

《在Java中使用ModelMapper简化Shapefile属性转JavaBean实战过程》本文介绍了在Java中使用ModelMapper库简化Shapefile属性转JavaBean的过程,对比... 目录前言一、原始的处理办法1、使用Set方法来转换2、使用构造方法转换二、基于ModelMapper

springboot启动流程过程

《springboot启动流程过程》SpringBoot简化了Spring框架的使用,通过创建`SpringApplication`对象,判断应用类型并设置初始化器和监听器,在`run`方法中,读取配... 目录springboot启动流程springboot程序启动入口1.创建SpringApplicat

本地搭建DeepSeek-R1、WebUI的完整过程及访问

《本地搭建DeepSeek-R1、WebUI的完整过程及访问》:本文主要介绍本地搭建DeepSeek-R1、WebUI的完整过程及访问的相关资料,DeepSeek-R1是一个开源的人工智能平台,主... 目录背景       搭建准备基础概念搭建过程访问对话测试总结背景       最近几年,人工智能技术

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep