textFile.map(line => line.split(" ").size).reduce((a, b) => if (a > b) a else b) The arguments to reduce() are Scala function literals (closures)。 reduce将RDD中元素两两传递给输入函数? 同时产生一个新的值,新产生的值与RDD中下一个
first def first(): T first返回RDD中的第一个元素,不排序。 scala> var rdd1 = sc.makeRDD(Array(("A","1"),("B","2"),("C","3")),2)rdd1: org.apache.spark.rdd.RDD[(String, String)] = ParallelCollectionRDD[33] at mak
这是初始化表格数据时报的错 。 [Vue warn]: Invalid prop: type check failed for prop "data". Expected Array, got Object found in---> <ElTable> at packages/table/src/table.vue<List> at src/views/org/List.vue<Catalogu
原文链接: http://horicky.blogspot.com/2008/11/hadoop-mapreduce-implementation.html HadoopMap/Reduce Implementation In my previous post, I talk aboutthe methodology of transforming a sequential algo
mapper side join 这个没仔细讲,但是是在每个Mapper里来做的。 reduce side join 老师讲的非常清楚了,比如说CustomerMapper和OrderMapper,我都是处理出一个key-value值,这个key就是两个表都有的字段比如说Customer_Id。当然,order这边可能一个Customer会有多个订单,所以是多个订单记录组成的va